Cancer Immunology, Immunotherapy

, Volume 57, Issue 6, pp 813–821 | Cite as

Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner

  • Sheraz Yaqub
  • Karen Henjum
  • Milada Mahic
  • Frode L. Jahnsen
  • Einar M. Aandahl
  • Bjørn A. Bjørnbeth
  • Kjetil TaskénEmail author
Original Article



Naturally occurring regulatory T (TR) cells suppress autoreactive T cells whereas adaptive TR cells, induced in the periphery, play an important role in chronic viral diseases and cancer. Several studies indicate that cyclooxygenase (COX) inhibitors prevent cancer development of colon adenomas and delay disease progression in patients with colorectal cancer (CRC). We have shown that adaptive TR cells express COX-2 and produce PGE2 that suppress effector T cells in a manner that is reversed by COX-inhibitors.

Methods and results

Here we demonstrate that CRC patients have elevated levels of PGE2 in peripheral blood, and CRC tissue samples and draining lymph nodes display increased numbers of FOXP3+ TR cells. Depletion of TR cells from PBMC enhanced anti-tumor T-cell responses to peptides from carcinoembryonic antigen. Furthermore, the COX inhibitor indomethacin and the PKA type I antagonist Rp-8-Br-cAMPS significantly improved the anti-tumor immune activity.


We suggest that adaptive TR cells contribute to an immunosuppressive microenvironment in CRC and inhibit effector T cells by a COX-2–PGE2-dependent mechanism and thereby facilitate tumor growth. Therapeutic strategies targeting TR cells and the PGE2–cAMP pathway may be interesting to pursue to enhance anti-tumor immune activity in CRC patients.


Human Colorectal cancer Regulatory T cells COX-2 PGE2 



Carcinoembryonic antigen


Cyclooxygenase type 2


Colorectal cancer


Prostagandin E2

TR cells

Regulatory T cells



We are grateful for the routine pathology data made available from Department of Pathology, Ullevaal University Hospital and technical assistance with preparation of tissue specimens and multicolor immunostaining by Linda Kristiansen, Vigdis Wendel, and Aaste Aursjo (The Pathology Clinic, Rikshospitalet-Radiumhospitalet Medical Center). This work was supported by grants from the Norwegian Functional Genomics Programme (FUGE), The Research Council of Norway, The Norwegian Cancer Society, Novo Nordic Foundation Committee, and the European Union grant no. 037189. S. Yaqub and M. Mahic are fellows of the Norwegian Cancer Society.


  1. 1.
    Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217PubMedCrossRefGoogle Scholar
  2. 2.
    Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc’h N, Zeng G, Reckamp K, Dohadwala M, Sharma S, Dubinett SM (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175:1483–1490PubMedGoogle Scholar
  3. 3.
    Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim K, Tang J, Rosenstein RB, Wittes J, Corle D, Hess TM, Woloj GM, Boisserie F, Anderson WF, Viner JL, Bagheri D, Burn J, Chung DC, Dewar T, Foley TR, Hoffman N, Macrae F, Pruitt RE, Saltzman JR, Salzberg B, Sylwestrowicz T, Gordon GB, Hawk ET (2006) Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med 355:873–884PubMedCrossRefGoogle Scholar
  4. 4.
    Boyle P, Ferlay J (2005) Cancer incidence and mortality in Europe, 2004. Ann Oncol 16:481–488PubMedCrossRefGoogle Scholar
  5. 5.
    Cai Q, Gao YT, Chow WH, Shu XO, Yang G, Ji BT, Wen W, Rothman N, Li HL, Morrow JD, Zheng W (2006) Prospective study of urinary prostaglandin E2 metabolite and colorectal cancer risk. J Clin Oncol 24:5010–5016PubMedCrossRefGoogle Scholar
  6. 6.
    Campi G, Crosti M, Consogno G, Facchinetti V, Conti-Fine BM, Longhi R, Casorati G, Dellabona P, Protti MP (2003) CD4(+) T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant epitope. Cancer Res 63:8481–8486PubMedGoogle Scholar
  7. 7.
    Cha YI, Dubois RN (2007) NSAIDs and Cancer Prevention: Targets Downstream of COX-2. Annu Rev Med 58:239–252PubMedCrossRefGoogle Scholar
  8. 8.
    Clarke SL, Betts GJ, Plant A, Wright KL, El-Shanawany TM, Harrop R, Torkington J, Rees BI, Williams GT, Gallimore AM, Godkin AJ (2006) CD4CD25FOXP3 regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE 1:e129PubMedCrossRefGoogle Scholar
  9. 9.
    Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310PubMedCrossRefGoogle Scholar
  10. 10.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  11. 11.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRefGoogle Scholar
  12. 12.
    Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193:1303–1310PubMedCrossRefGoogle Scholar
  13. 13.
    Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073PubMedGoogle Scholar
  14. 14.
    Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, Dubois RN (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–1188PubMedGoogle Scholar
  15. 15.
    Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336PubMedCrossRefGoogle Scholar
  16. 16.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964PubMedCrossRefGoogle Scholar
  17. 17.
    Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11–21PubMedCrossRefGoogle Scholar
  18. 18.
    Hansen-Petrik MB, McEntee MF, Jull B, Shi H, Zemel MB, Whelan J (2002) Prostaglandin E(2) protects intestinal tumors from nonsteroidal anti-inflammatory drug-induced regression in Apc(Min/+) mice. Cancer Res 62:403–408PubMedGoogle Scholar
  19. 19.
    Horig H, Medina FA, Conkright WA, Kaufman HL (2000) Strategies for cancer therapy using carcinoembryonic antigen vaccines. Expert Rev Mol Med 2000:1–24Google Scholar
  20. 20.
    Jacobs EJ, Thun MJ, Bain EB, Rodriguez C, Henley SJ, Calle EE (2007) A large cohort study of long-term daily use of adult-strength aspirin and cancer incidence. J Natl Cancer Inst 99:608–615PubMedCrossRefGoogle Scholar
  21. 21.
    Jaffe BM, Parker CW, Philpott GW (1971) Immunochemical measurement of prostaglandin or prostaglandin-like activity from normal and neoplastic cultured tissue. Surg Forum 22:90–92PubMedGoogle Scholar
  22. 22.
    Jahnsen FL, Brandtzaeg P, Halstensen TS (1994) Monoclonal antibody EG2 does not provide reliable immunohistochemical discrimination between resting and activated eosinophils. J Immunol Methods 175:23–36PubMedCrossRefGoogle Scholar
  23. 23.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130PubMedCrossRefGoogle Scholar
  24. 24.
    Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E (1999) Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res 59:431–435PubMedGoogle Scholar
  25. 25.
    Kim R, Emi M, Tanabe K, Arihiro K (2006) Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66:5527–5536PubMedCrossRefGoogle Scholar
  26. 26.
    Ling KL, Pratap SE, Bates GJ, Singh B, Mortensen NJ, George BD, Warren BF, Piris J, Roncador G, Fox SB, Banham AH, Cerundolo V (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7PubMedGoogle Scholar
  27. 27.
    Loddenkemper C, Schernus M, Noutsias M, Stein H, Thiel E, Nagorsen D (2006) In situ analysis of FOXP3+ regulatory T cells in human colorectal cancer. J Transl Med 4:52PubMedCrossRefGoogle Scholar
  28. 28.
    Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM (2006) FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177:246–254PubMedGoogle Scholar
  29. 29.
    Mutoh M, Watanabe K, Kitamura T, Shoji Y, Takahashi M, Kawamori T, Tani K, Kobayashi M, Maruyama T, Kobayashi K, Ohuchida S, Sugimoto Y, Narumiya S, Sugimura T, Wakabayashi K (2002) Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Res 62:28–32PubMedGoogle Scholar
  30. 30.
    Nomura T, Sakaguchi S (2005) Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol 293:287–302PubMedCrossRefGoogle Scholar
  31. 31.
    Nukaya I, Yasumoto M, Iwasaki T, Ideno M, Sette A, Celis E, Takesako K, Kato I (1999) Identification of HLA-A24 epitope peptides of carcinoembryonic antigen which induce tumor-reactive cytotoxic T lymphocyte. Int J Cancer 80:92–97PubMedCrossRefGoogle Scholar
  32. 32.
    Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666PubMedCrossRefGoogle Scholar
  33. 33.
    Pillai V, Ortega SB, Wang CK, Karandikar NJ (2007) Transient regulatory T-cells: a state attained by all activated human T-cells. Clin Immunol 123:18–29PubMedCrossRefGoogle Scholar
  34. 34.
    Psaty BM, Potter JD (2006) Risks and benefits of celecoxib to prevent recurrent adenomas. N Engl J Med 355:950–952PubMedCrossRefGoogle Scholar
  35. 35.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMedGoogle Scholar
  36. 36.
    Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A (2003) CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98:1089–1099PubMedCrossRefGoogle Scholar
  37. 37.
    Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM (2005) Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res 65:5211–5220PubMedCrossRefGoogle Scholar
  38. 38.
    Sharma S, Zhu L, Yang SC, Zhang L, Lin J, Hillinger S, Gardner B, Reckamp K, Strieter RM, Huang M, Batra RK, Dubinett SM (2005) Cyclooxygenase 2 inhibition promotes IFN-gamma-dependent enhancement of antitumor responses. J Immunol 175:813–819PubMedGoogle Scholar
  39. 39.
    Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J, Beauchamp RD, Dubois RN (1997) Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest 99:2254–2259PubMedCrossRefGoogle Scholar
  40. 40.
    Sonoshita M, Takaku K, Sasaki N, Sugimoto Y, Ushikubi F, Narumiya S, Oshima M, Taketo MM (2001) Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(delta 716) knockout mice. Nat Med 7:1048–1051PubMedCrossRefGoogle Scholar
  41. 41.
    Tanaka H, Tanaka J, Kjaergaard J, Shu S (2002) Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 25:207–217PubMedCrossRefGoogle Scholar
  42. 42.
    Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87:982–990PubMedCrossRefGoogle Scholar
  43. 43.
    Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van LM, Buckner JH, Ziegler SF (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+. J Clin Invest 112:1437–1443PubMedGoogle Scholar
  44. 44.
    Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55:115–122PubMedCrossRefGoogle Scholar
  45. 45.
    Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Ushikubi F, Narumiya S, Sugimura T, Wakabayashi K (1999) Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res 59:5093–5096PubMedGoogle Scholar
  46. 46.
    Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW (2005) Colorectal cancer. Lancet 365:153–165PubMedCrossRefGoogle Scholar
  47. 47.
    Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612PubMedGoogle Scholar
  48. 48.
    Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J (1997) Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 57:4570–4577PubMedGoogle Scholar
  49. 49.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213PubMedCrossRefGoogle Scholar
  50. 50.
    Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sheraz Yaqub
    • 1
    • 2
  • Karen Henjum
    • 1
    • 2
    • 3
  • Milada Mahic
    • 1
    • 2
  • Frode L. Jahnsen
    • 4
  • Einar M. Aandahl
    • 1
    • 2
  • Bjørn A. Bjørnbeth
    • 3
  • Kjetil Taskén
    • 1
    • 2
    Email author
  1. 1.The Biotechnology Centre of OsloUniversity of OsloOsloNorway
  2. 2.Centre for Molecular Medicine Norway, Nordic EMBL PartnershipUniversity of OsloOsloNorway
  3. 3.Department of Gastroenterological SurgeryUllevaal University HospitalOsloNorway
  4. 4.The Pathology ClinicRikshospitalet-Radiumhospitalet Medical CenterOsloNorway

Personalised recommendations