Cancer Immunology, Immunotherapy

, Volume 57, Issue 2, pp 247–263 | Cite as

Role of IgE receptors in IgE antibody-dependent cytotoxicity and phagocytosis of ovarian tumor cells by human monocytic cells

  • Sophia N. Karagiannis
  • Marguerite G. Bracher
  • Rebecca L. Beavil
  • Andrew J. Beavil
  • James Hunt
  • Natalie McCloskey
  • Richard G. Thompson
  • Nicholas East
  • Frances Burke
  • Brian J. Sutton
  • David Dombrowicz
  • Frances R. Balkwill
  • Hannah J. Gould
Original Article


Antibodies directed against tumor-associated antigens are emerging as effective treatments for a number of cancers, although the mechanism(s) of action for some are unclear and still under investigation. We have previously examined a chimeric IgE antibody (MOv18 IgE), against the ovarian tumor-specific antigen, folate binding protein (FBP), and showed that it can direct human PBMC to kill ovarian cancer cells. We have developed a three-color flow cytometric assay to investigate the mechanism by which IgE receptors on U937 monocytes target and kill ovarian tumor cells. U937 monocytes express three IgE receptors, the high-affinity receptor, FcεRI, the low-affinity receptor, CD23, and galectin-3, and mediate tumor cell killing in vitro by two mechanisms, cytotoxicity, and phagocytosis. Our results suggest that CD23 mediates phagocytosis, which is enhanced by upregulation of CD23 on U937 cells with IL-4, whereas FcεRI mediates cytotoxicity. We show that effector : tumor cell bridging is associated with both activities. Galectin-3 does not appear to be involved in tumor cell killing. U937 cells and IgE exerted ovarian tumor cell killing in vivo in our xenograft model in nude mice. Harnessing IgE receptors to target tumor cells suggests the potential of tumor-specific IgE antibodies to activate effector cells in immunotherapy of ovarian cancer.


Monocytes Cytotoxicity Phagocytosis Fc Receptors Tumor immunity 



Antibody-dependent cell-mediated cytotoxicity


Antibody-dependent cell-mediated phagocytosis


Folate binding protein


Soluble FcεRI α-chain


Complete medium


Propidium iodide


Carboxy-fluorescein diacetate, succinimidyl ester





We are grateful to Dr. David Fear and Dr. Philippe Gevaert for providing generous technical expertise and advice and to Dr. Pooja Takhar for her helpful critical comments. We thank Ms. Kate Kirwan for expert assistance with the figures. We are grateful to Dr. Marie-Hélène Jouvin, Dr. Jean-Pierre Kinet, Dr. Silvana Canevari, Prof. Fu-Tong Liu, Dr. J. Hopp, and Prof. R. Korngold, for the generous provision of advice and materials. This study was supported by the Association for International Cancer Research, United Kingdom.

Supplementary material

262_2007_371_MOESM1_ESM.doc (58 kb)
(DOC 58 kb)


  1. 1.
    Glennie MJ, van de Winkel JG (2003) Renaissance of cancer therapeutic antibodies. Drug Discov Today 8:503–510PubMedCrossRefGoogle Scholar
  2. 2.
    Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357PubMedCrossRefGoogle Scholar
  3. 3.
    Brüggeman M, Caskey HM, Teale C, Waldmann H, Williams G, Surani NA, Neuberger MS (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 166:1351–1361CrossRefGoogle Scholar
  4. 4.
    Dyer MJS, Hale G, Hayhoe FGJ, Waldmann H (1989) Effects in vivo in patients with lymphoid malignancies; influence of antibody isotype. Blood 73:1431–1439PubMedGoogle Scholar
  5. 5.
    Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6:443–446PubMedCrossRefGoogle Scholar
  6. 6.
    Reali E, Greiner JW, Corti A, Gould HJ, Bottazzoli F, Paganelli G, Schlom J, Siccardi AG (2001) IgEs targeted on tumor cells: therapeutic activity and potential in the design of tumour vaccines. Cancer Res 61:5517–5522PubMedGoogle Scholar
  7. 7.
    Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, Smurthwaite L (2003) The biology of IgE and the basis of allergic disease. Annu Rev Immunol 21:579–628PubMedCrossRefGoogle Scholar
  8. 8.
    Gould HJ, Mackay GA, Karagiannis SN, O’Toole CM, Marsh PJ, Daniel BE, Coney LR Zurawski VR Jr, Joseph M, Capron M, Gilbert M, Murphy GF, Korngold R (1999) Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol 29:3527–3537PubMedCrossRefGoogle Scholar
  9. 9.
    Karagiannis SN, Wang Q, East N, Burke F, Riffard S, Bracher MG, Thompson RG, Durham SR, Schwartz LB, Balkwill FR, Gould HJ (2003) Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol 33:1030–1040PubMedCrossRefGoogle Scholar
  10. 10.
    Campbell IG, Jones TA, Foulkes WD, Trowsdale J (1991) Folate binding protein is a marker for ovarian cancer. Cancer Res 51:5329–5338PubMedGoogle Scholar
  11. 11.
    Coney LR, Tomassetti A, Carayannopoulos L, Frasca V, Kamen BA, Colnaghi MI, Zurawski VR Jr (1991) Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res 51:6125–6132PubMedGoogle Scholar
  12. 12.
    Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M (1997) Overexpression of folate binding protein in ovarian cancers. Int J Cancer 74:193–198PubMedCrossRefGoogle Scholar
  13. 13.
    Williams J, Johnson S, Mascali JJ, Smith H, Rosenwasser LJ, Borish L (1992) Regulation of low affinity IgE receptor (CD23) expression on mononuclear phagocytes in normal and asthmatic subjects. J Immunol 149:2823–2829PubMedGoogle Scholar
  14. 14.
    Wong HL, Lotze MT, Wahl LM, Wahl SM (1992) Administration of recombinant IL-4 to humans regulates gene expression, phenotype, and function in circulating monocytes. J Immunol 148:2118–2125PubMedGoogle Scholar
  15. 15.
    Boltz-Nitulescu G, Willheim M, Spittler A, Leutmezer F, Tempfer C, Winkler S (1995) Modulation of IgA, IgE, and IgG Fc receptor expression on human mononuclear phagocytes by 1 alpha,25-dihydroxyvitamin D3 and cytokines. J Leukoc Biol 58:256–262PubMedGoogle Scholar
  16. 16.
    Maurer D, Fiebiger E, Reininger B, Wolff-Winiski B, Jouvin MH, Kilgus O, Kinet JP, Stingl G (1994) Expression of functional high affinity immunoglobulin E receptors (Fc epsilon RI) on monocytes of atopic individuals. J Exp Med 179:745–750PubMedCrossRefGoogle Scholar
  17. 17.
    Reischl IG, Corvaia N, Effenberger F, Wolff-Winiski B, Kromer E, Mudde GC (1996) Function and regulation of Fc epsilon RI expression on monocytes from non-atopic donors. Clin Exp Allergy 26:630–641PubMedCrossRefGoogle Scholar
  18. 18.
    Frigeri LG, Liu FT (1992) Surface expression of functional IgE binding protein, an endogenous lectin, on mast cells and macrophages. J Immunol 148:861–867PubMedGoogle Scholar
  19. 19.
    Liu FT, Hsu DK, Zuberi RI, Kuwabara I, Chi EY, Henderson WR Jr (1995) Expression and function of galectin-3, a beta-galactoside-binding lectin, in human monocytes and macrophages. Am J Pathol 147:1016–1028PubMedGoogle Scholar
  20. 20.
    Liu FT, Hsu DK, Zuberi RI, Shenhav A, Hill PN, Kuwabara I, Chen SS (1996) Modulation of functional properties of galectin-3 by monoclonal antibodies binding to the non-lectin domain. Biochemistry 35:6073–6079PubMedCrossRefGoogle Scholar
  21. 21.
    Yokota A, Kikutani H, Tanaka T, Sato R, Barsumian EL, Suemura M, Kishimoto T (1988) Two species of human Fcε receptor II (FcεRII/CD23): tissue-specific and IL-4-specific regulation of gene expression. Cell 55:611–618PubMedCrossRefGoogle Scholar
  22. 22.
    Yokota A, Yukawa K, Yamamoto A, Sugiyama K, Suemura M, Tashiro Y, Kishimoto T, Kikutani H (1992) Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: identification of the critical cytoplasmic domains. Proc Natl Acad Sci USA 89:5030–5034PubMedCrossRefGoogle Scholar
  23. 23.
    Mossalayi MD, Paul-Eugene N, Ouaaz F, Arock M, Kolb JP, Kilchherr E, Debre P, Dugas B (1994) Involvement of Fc epsilon RII/CD23 and L-arginine-dependent pathway in IgE-mediated stimulation of human monocyte functions. Int Immunol 6:931–938PubMedCrossRefGoogle Scholar
  24. 24.
    Paul-Eugene N, Mossalayi D, Sarfati M, Yamaoka K, Aubry JP, Bonnefoy JY, Dugas B, Kolb JP (1995) Evidence for a role of Fc epsilon RII/CD23 in the IL-4-induced nitric oxide production by normal human mononuclear phagocytes. Cell Immunol 163:314–318PubMedCrossRefGoogle Scholar
  25. 25.
    Vouldoukis I, Riveros-Moreno V, Dugas B, Ouaaz F, Becherel P, Debre P, Moncada S, Mossalayi MD (1995) The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci USA 92:7804–7808PubMedCrossRefGoogle Scholar
  26. 26.
    Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492PubMedGoogle Scholar
  27. 27.
    Dyall R, Vasovic LV, Clynes RA, Nikolic-Zugic J (1999) Cellular requirements for the monoclonal antibody-mediated eradication of an established solid tumor. Eur J Immunol 29:30–37PubMedCrossRefGoogle Scholar
  28. 28.
    Liu FT (2005) Regulatory roles of galectins in the immune response. Int Arch Allergy Immunol 136:385–400PubMedCrossRefGoogle Scholar
  29. 29.
    Sundström G, Nilsson K (1976) Establishment and characterization of a human histiocytic cell-line (U937). Int J Cancer 17:565–577PubMedCrossRefGoogle Scholar
  30. 30.
    Benard J, Da Silva J, De Blois MC, Boyer P, Duvillard P, Chiric E, Riou G (1985) Characterization of a human ovarian adenocarcinoma line, IGROV1, in tissue culture and in nude mice. Cancer Res 45:4970–4979PubMedGoogle Scholar
  31. 31.
    Balkwill FR, Lee A, Aldam G, Moodie E, Thomas JA, Tavernier J, Fiers W (1986) Human tumor xenografts treated with recombinant human tumor necrosis factor alone or in combination with interferons. Cancer Res 46:3990–3993PubMedGoogle Scholar
  32. 32.
    Bracher M, Gould HJ, Sutton BJ, Dombrowicz D, Karagiannis SN (2007) Three-colour flow cytometric method to measure antibody-dependent tumour cell killing by cytotoxicity and phagocytosis. J Immunol Methods 323:160–171PubMedCrossRefGoogle Scholar
  33. 33.
    Neuberger MS, Williams GT, Mitchell EB, Jouhal SS, Flanagan JG, Rabbitts TH (1985) A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature 314:268–270PubMedCrossRefGoogle Scholar
  34. 34.
    Cook JP, Henry AJ, McDonnell JM, Owens RJ, Sutton BJ, Gould HJ (1997) Identification of contact residues in the IgE binding site of human FcεRIα. Biochemistry 36:15579–15588PubMedCrossRefGoogle Scholar
  35. 35.
    Wakai M, Pasley P, Sthoeger ZM, Posnett DN, Brooks R, Hashimoto S, Chiorazzi N (1993) Anti-CD23 monoclonal antibodies: comparisons of epitope specificities and modulating capacities for IgE binding and production. Hybridoma 12:25–43PubMedCrossRefGoogle Scholar
  36. 36.
    Mavromatis BH, Cheson BD (2004) Novel therapies for chronic lymphocytic leukemia. Blood Rev 18:137–148PubMedCrossRefGoogle Scholar
  37. 37.
    Riske F, Hakimi J, Mallamaci M, Griffin M, Pilson B, Tobkes N, Lin P, Danho W, Kochan J, Chizzonite R (1991) High affinity human IgE receptor (Fc epsilon RI). Analysis of functional domains of the alpha-subunit with monoclonal antibodies. J Biol Chem 266:11245–11251PubMedGoogle Scholar
  38. 38.
    Wang B, Rieger A, Kilgus O, Ochiai K, Maurer D, Fodinger D, Kinet JP, Stingl G (1992) Epidermal Langerhans cells from normal human skin bind monomeric IgE via Fc epsilon RI. J Exp Med 175:1353–1365PubMedCrossRefGoogle Scholar
  39. 39.
    Lin S, Cicala C, Scharenberg AM, Kinet JP (1996) The FcεRI β subunit functions as an amplifier of FcεRI γ-mediated cell activation signals. Cell 85:985–995PubMedCrossRefGoogle Scholar
  40. 40.
    Tomassetti A, Coney LR, Canevari S, Miotti S, Facheris P, Zurawski VR Jr, Colnaghi MI (1993) Isolation and biochemical characterization of the soluble and membrane forms of folate binding protein expressed in the ovarian carcinoma cell line IGROV1. FEBS Lett 317:143–146PubMedCrossRefGoogle Scholar
  41. 41.
    Vercelli D, Helm B, Marsh P, Padlan E, Geha RS, Gould H (1989) The B-cell binding site on human immunoglobulin E. Nature 338:649–651PubMedCrossRefGoogle Scholar
  42. 42.
    Keegan AD, Fratazzi C, Shopes B, Baird B, Conrad DH (1991) Characterization of new rat anti-mouse IgE monoclonals and their use along with chimeric IgE to further define the site that interacts with FcεRII and FcεRI. Mol Immunol 28:1149–1154PubMedCrossRefGoogle Scholar
  43. 43.
    Kayaba H, Dombrowicz D, Woerly G, Papin JP, Loiseau S, Capron M (2001) Human eosinophils and human high affinity IgE receptor transgenic mouse eosinophils express low levels of high affinity IgE receptor, but release IL-10 upon receptor activation. J Immunol 167:995–1003PubMedGoogle Scholar
  44. 44.
    Oliver JM, Kepley CL, Ortega E, Wilson BS (2000) Immunologically mediated signaling in basophils and mast cells: finding therapeutic targets for allergic diseases in the human FcepsilonR1 signalling pathway. Immunopharmacology 48:269–281PubMedCrossRefGoogle Scholar
  45. 45.
    Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet JP, Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367:183–186PubMedCrossRefGoogle Scholar
  46. 46.
    Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, Dimina D, Ochkur SI, O’Neill K, Colbert D, Lombari TR, Constant S, McGarry MP, Lee JJ, Lee NA (2006) Pivotal advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol 79:1131–1139PubMedCrossRefGoogle Scholar
  47. 47.
    Munitz A, Levi-Schaffer F (2004) Eosinophils: ‘new’ roles for ‘old’ cells. Allergy 59:268–275PubMedCrossRefGoogle Scholar
  48. 48.
    MacGlashan DW Jr (1993) Releasability of human basophils: cellular sensitivity and maximal histamine release are independent variables. J Allergy Clin Immunol 91:605–615PubMedCrossRefGoogle Scholar
  49. 49.
    Coney LR, Mezzanzanica D, Sanborn D, Casalini P, Colnaghi MI, Zurawski VR Jr (1994) Chimeric murine-human antibodies directed against folate binding receptor are efficient mediators of ovarian carcinoma cell killing. Cancer Res 54:2448–2455PubMedGoogle Scholar
  50. 50.
    Molthoff CF, Prinssen HM, Kenemans P, van Hof AC, den Hollander W, Verheijen RH (1997) Escalating protein doses of chimeric monoclonal antibody MOv18 immunoglobulin G in ovarian carcinoma patients: a phase I study. Cancer 80:2712–2720PubMedCrossRefGoogle Scholar
  51. 51.
    Buijs WC, Tibben JG, Boerman OC, Molthoff CF, Massuger LF, Koenders EB, Schijf CP, Siegel JA, Corstens FH (1998) Dosimetric analysis of chimeric monoclonal antibody cMOv18 IgG in ovarian carcinoma patients after intraperitoneal and intravenous administration. Eur J Nucl Med 25:1552–1561PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sophia N. Karagiannis
    • 1
  • Marguerite G. Bracher
    • 1
  • Rebecca L. Beavil
    • 1
  • Andrew J. Beavil
    • 1
  • James Hunt
    • 1
  • Natalie McCloskey
    • 1
  • Richard G. Thompson
    • 2
  • Nicholas East
    • 2
  • Frances Burke
    • 2
  • Brian J. Sutton
    • 1
  • David Dombrowicz
    • 3
  • Frances R. Balkwill
    • 2
  • Hannah J. Gould
    • 1
  1. 1.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
  2. 2.Centre for Translational Oncology, Institute of Cancer and the CR-UK Clinical CentreBarts and The London, Queen Mary’s School of Medicine and DentistryLondonUK
  3. 3.Institut National de la Santé et de la Recherche Médicale, Institut Fédératif de Recherche 17Institut Pasteur de LilleLilleFrance

Personalised recommendations