Cancer Immunology, Immunotherapy

, Volume 57, Issue 1, pp 85–95 | Cite as

Immunological tumor destruction in a murine melanoma model by targeted LTα independent of secondary lymphoid tissue

  • David Schrama
  • Heike Voigt
  • Andreas O. Eggert
  • Rong Xiang
  • He Zhou
  • Ton N. M. Schumacher
  • Mads H. Andersen
  • Per thor Straten
  • Ralph A. Reisfeld
  • Jürgen C. Becker
Original Article



We previously demonstrated that targeting lymphotoxin α (LTα) to the tumor evokes its immunological destruction in a syngeneic B16 melanoma model. Since treatment was associated with the induction of peritumoral tertiary lymphoid tissue, we speculated that the induced immune response was initiated at the tumor site.

Methods and results

In order to directly test this notion, we analyzed the efficacy of tumor targeted LTα in LTα knock-out (LTα−/−) mice which lack peripheral lymph nodes. To this end, we demonstrate that tumor-targeted LTα mediates the induction of specific T-cell responses even in the absence of secondary lymphoid organs. In addition, this effect is accompanied by the initiation of tertiary lymphoid tissue at the tumor site in which B and T lymphocytes are compartmentalized in defined areas and which harbor expanded numbers of tumor specific T cells as demonstrated by in situ TRP-2/Kb tetramer staining. Mechanistically, targeted LTα therapy seems to induce changes at the tumor site which allows a coordinated interaction of immune competent cells triggering the induction of tertiary lymphoid tissue.


Thus, our data demonstrate that targeted LTα promotes an accelerated immune response by enabling the priming of T cells at the tumor site.


T cells Cytokines Tumor immunity Lymphotoxin alpha knock-out mice Antibody 



Antigen presenting cells


High endothelial venules


Lymphotoxin α


LTα knock-out


LTβ receptor


Soluble lymphotoxin α


  1. 1.
    Agyekum S, Church A, Sohail M, Krausz T, Van Noorden S, Polak J, Cohen J (2003) Expression of lymphotoxin-beta (LT-beta) in chronic inflammatory conditions. J Pathol 199:115–121PubMedCrossRefGoogle Scholar
  2. 2.
    Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217PubMedCrossRefGoogle Scholar
  3. 3.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  4. 4.
    Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725PubMedCrossRefGoogle Scholar
  5. 5.
    Caux C, Vanbervliet B, Massacrier C, Ait-Yahia S, Vaure C, Chemin K, Dieu-Nosjean M, Vicari A (2002) Regulation of dendritic cell recruitment by chemokines. Transplantation 73:S7–S11PubMedCrossRefGoogle Scholar
  6. 6.
    Cupedo T, Mebius RE (2005) Cellular interactions in lymph node development. J Immunol 174:21–25PubMedGoogle Scholar
  7. 7.
    Cyster JG (1999) Chemokines and cell migration in secondary lymphoid organs. Science 286:2098–2102PubMedCrossRefGoogle Scholar
  8. 8.
    Davis IA, Knight KA, Rouse BT (1998) The spleen and organized lymph nodes are not essential for the development of gut-induced mucosal immune responses in lymphotoxin-alpha deficient mice. Clin Immunol Immunopathol 89:150–159PubMedCrossRefGoogle Scholar
  9. 9.
    Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7:344–353PubMedCrossRefGoogle Scholar
  10. 10.
    Fan L, Reilly CR, Luo Y, Dorf ME, Lo D (2000) Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J Immunol 164:3955–3959PubMedGoogle Scholar
  11. 11.
    Finke D (2005) Fate and function of lymphoid tissue inducer cells. Curr Opin Immunol 17:144–150PubMedCrossRefGoogle Scholar
  12. 12.
    Fu YX, Chaplin DD (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433PubMedCrossRefGoogle Scholar
  13. 13.
    Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K (1998) The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9:59–70PubMedCrossRefGoogle Scholar
  14. 14.
    Gillies SD, Young D, Lo KM, Foley SF, Reisfeld RA (1991) Expression of genetically engineered immunoconjugates of lymphotoxin and a chimeric anti-ganglioside GD2 antibody. Hybridoma 10:347–356PubMedCrossRefGoogle Scholar
  15. 15.
    Gillies SD, Young D, Lo KM, Roberts S (1993) Biological activity and in vivo clearance of antitumor antibody/cytokine fusion proteins. Bioconjug Chem 4:230–235PubMedCrossRefGoogle Scholar
  16. 16.
    Haanen JB, Toebes M, Cordaro TA, Wolkers MC, Kruisbeek AM, Schumacher TN (1999) Systemic T cell expansion during localized viral infection. Eur J Immunol 29:1168–1174PubMedCrossRefGoogle Scholar
  17. 17.
    Haanen JB, van Oijen MG, Tirion F, Oomen LC, Kruisbeek AM, Vyth-Dreese FA, Schumacher TN (2000) In situ detection of virus- and tumor-specific T-cell immunity. Nat Med 6:1056–1060PubMedCrossRefGoogle Scholar
  18. 18.
    Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H (1994) Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8- sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci USA 91:10455–10459PubMedCrossRefGoogle Scholar
  19. 19.
    Hjelmstrom P, Fjell J, Nakagawa T, Sacca R, Cuff CA, Ruddle NH (2000) Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am J Pathol 156:1133–1138PubMedGoogle Scholar
  20. 20.
    Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, Tamechika M, Yamaguchi K, Fukumoto T, Chiba T, Nishikawa SI (2001) Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med 193:621–630PubMedCrossRefGoogle Scholar
  21. 21.
    Iizuka K, Chaplin DD, Wang Y, Wu Q, Pegg LE, Yokoyama WM, Fu YX (1999) Requirement for membrane lymphotoxin in natural killer cell development. Proc Natl Acad Sci USA 96:6336–6340PubMedCrossRefGoogle Scholar
  22. 22.
    Kim HJ, Kammertoens T, Janke M, Schmetzer O, Qin Z, Berek C, Blankenstein T (2004) Establishment of early lymphoid organ infrastructure in transplanted tumors mediated by local production of lymphotoxin alpha and in the combined absence of functional B and T cells. J Immunol 172:4037–4047PubMedGoogle Scholar
  23. 23.
    Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA (1997) Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 6:491–500PubMedCrossRefGoogle Scholar
  24. 24.
    Kratz A, Campos-Neto A, Hanson MS, Ruddle NH (1996) Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med 183:1461–1472PubMedCrossRefGoogle Scholar
  25. 25.
    Lee BJ, Santee S, Von Gesjen S, Ware CF, Sarawar SR (2000) Lymphotoxin-alpha-deficient mice can clear a productive infection with murine gammaherpesvirus 68 but fail to develop splenomegaly or lymphocytosis. J Virol 74:2786–2792PubMedCrossRefGoogle Scholar
  26. 26.
    Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J, Chervonsky AV, Fu YX (2006) Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity 25:499–509PubMedCrossRefGoogle Scholar
  27. 27.
    Lu TT, Cyster JG (2002) Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297:409–412PubMedCrossRefGoogle Scholar
  28. 28.
    Lund FE, Partida-Sanchez S, Lee BO, Kusser KL, Hartson L, Hogan RJ, Woodland DL, Randall TD (2002) Lymphotoxin-alpha-deficient mice make delayed, but effective, T and B cell responses to influenza. J Immunol 169:5236–5243PubMedGoogle Scholar
  29. 29.
    Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, Matloubian M, Cyster JG (2002) Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169:424–433PubMedGoogle Scholar
  30. 30.
    Matsumoto M, Iwamasa K, Rennert PD, Yamada T, Suzuki R, Matsushima A, Okabe M, Fujita S, Yokoyama M (1999) Involvement of distinct cellular compartments in the abnormal lymphoid organogenesis in lymphotoxin-alpha-deficient mice and alymphoplasia (aly) mice defined by the chimeric analysis. J Immunol 163:1584–1591PubMedGoogle Scholar
  31. 31.
    Matsushima A, Kaisho T, Rennert PD, Nakano H, Kurosawa K, Uchida D, Takeda K, Akira S, Matsumoto M (2001) Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J Exp Med 193:631–636PubMedCrossRefGoogle Scholar
  32. 32.
    Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, Woodland DL, Lund FE, Randall TD (2004) Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10:927–934PubMedCrossRefGoogle Scholar
  33. 33.
    Muller G, Lipp M (2003) Concerted action of the chemokine and lymphotoxin system in secondary lymphoid-organ development. Curr Opin Immunol 15:217–224PubMedCrossRefGoogle Scholar
  34. 34.
    Nasr IW, Reel M, Oberbarnscheidt MH, Mounzer RH, Baddoura FK, Ruddle NH, Lakkis FG (2007) Tertiary lymphoid tissues generate effector and memory T cells that lead to allograft rejection. Am J Transpl 7:1071–1079CrossRefGoogle Scholar
  35. 35.
    Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS, Cooper MD, Browning JL, Sedgwick JD, Cyster JG (1999) Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 189:403–412PubMedCrossRefGoogle Scholar
  36. 36.
    Nishikawa S, Honda K, Vieira P, Yoshida H (2003) Organogenesis of peripheral lymphoid organs. Immunol Rev 195:72–80PubMedCrossRefGoogle Scholar
  37. 37.
    Oehen S, Brduscha-Riem K (1998) Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J Immunol 161:5338–5346PubMedGoogle Scholar
  38. 38.
    Reisfeld RA, Gillies SD, Mendelsohn J, Varki NM, Becker JC (1996) Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody-lymphotoxin fusion protein. Cancer Res 56:1707–1712PubMedGoogle Scholar
  39. 39.
    Schrama D, Pedersen LO, Keikavoussi P, Andersen MH, thor Straten P, Brocker EB, Kampgen E, Becker JC (2002) Aggregation of antigen-specific T cells at the inoculation site of mature dendritic cells. J Invest Dermatol 119:1443–1448PubMedCrossRefGoogle Scholar
  40. 40.
    Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159PubMedCrossRefGoogle Scholar
  41. 41.
    Schrama D, thor Straten P, Fischer WH, McLellan AD, Bröcker EB, Reisfeld RA, Becker JC (2001) Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14:111–121PubMedCrossRefGoogle Scholar
  42. 42.
    Schrama D, Voigt H, Eggert AO, Xiang R, Reisfeld RA, Becker JC (2005) Therapeutic efficacy of tumor-targeted IL2 in LTalpha(-/-) mice depends on conditioned T cells. Cancer Immunol Immunother 55:861–866PubMedCrossRefGoogle Scholar
  43. 43.
    Schrama D, Xiang R, Eggert AO, Andersen MH, Pedersen Ls LO, Kampgen E, Schumacher TN, Reisfeld RR, Becker JC (2004) Shift from systemic to site-specific memory by tumor-targeted IL-2. J Immunol 172:5843–5850PubMedGoogle Scholar
  44. 44.
    Suematsu S, Watanabe T (2004) Generation of a synthetic lymphoid tissue-like organoid in mice. Nat Biotechnol 22:1539–1545PubMedCrossRefGoogle Scholar
  45. 45.
    Suresh M, Lanier G, Large MK, Whitmire JK, Altman JD, Ruddle NH, Ahmed R (2002) Role of lymphotoxin alpha in T-cell responses during an acute viral infection. J Virol 76:3943–3951PubMedCrossRefGoogle Scholar
  46. 46.
    Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, Goronzy JJ, Weyand CM (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167:1072–1080PubMedGoogle Scholar
  47. 47.
    thor Straten P, Guldberg P, Seremet T, Reisfeld RA, Zeuthen J, Becker JC (1998) Activation of preexisting T cell clones by targeted interleukin 2 therapy. Proc Natl Acad Sci USA 95:8785–8790CrossRefGoogle Scholar
  48. 48.
    Voigt H, Schrama D, Eggert AO, Vetter CS, Muller-Blech K, Reichardt HM, Andersen MH, Becker JC, Luhder F (2006) CD28-mediated costimulation impacts on the differentiation of DC vaccination-induced T cell responses. Clin Exp Immunol 143:93–102PubMedCrossRefGoogle Scholar
  49. 49.
    Ware CF (2005) Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 23:787–819PubMedCrossRefGoogle Scholar
  50. 50.
    Young AC, Zhang W, Sacchettini JC, Nathenson SG (1994) The three-dimensional structure of H-2Db at 2.4 A resolution: implications for antigen-determinant selection. Cell 76:39–50PubMedCrossRefGoogle Scholar
  51. 51.
    Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5:141–149PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David Schrama
    • 1
  • Heike Voigt
    • 1
  • Andreas O. Eggert
    • 1
  • Rong Xiang
    • 2
  • He Zhou
    • 2
  • Ton N. M. Schumacher
    • 3
  • Mads H. Andersen
    • 4
  • Per thor Straten
    • 4
  • Ralph A. Reisfeld
    • 2
  • Jürgen C. Becker
    • 1
  1. 1.Department of DermatologyJulius-Maximilians-University, University of WürzburgWürzburgGermany
  2. 2.The Scripps Research InstituteLa JollaUSA
  3. 3.Division of immunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  4. 4.Tumor Immunology GroupInstitute of Cancer Biology, Danish Cancer SocietyCopenhagenDenmark

Personalised recommendations