Cancer Immunology, Immunotherapy

, Volume 56, Issue 9, pp 1485–1499 | Cite as

Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers

  • Inge Marie SvaneEmail author
  • Anders E. Pedersen
  • Julia S. Johansen
  • Hans E. Johnsen
  • Dorte Nielsen
  • Claus Kamby
  • Svend Ottesen
  • Eva Balslev
  • Eva Gaarsdal
  • Kirsten Nikolajsen
  • Mogens H. Claesson
Original Article


p53 mutations are found in up to 30% of breast cancers and peptides derived from over-expressed p53 protein are presented by class I HLA molecules and may act as tumor-associated epitopes in cancer vaccines. A dendritic cell (DC) based p53 targeting vaccine was analyzed in HLA-A2+ patients with progressive advanced breast cancer. DCs were loaded with 3 wild-type and 3 P2 anchor modified HLA-A2 binding p53 peptides. Patients received up to 10 sc vaccinations with 5 × 106 p53-peptide loaded DC with 1–2 weeks interval. Concomitantly, 6 MIU/m2 interleukine-2 was administered sc. Results from a phase II trial including 26 patients with verified progressive breast cancer are presented. Seven patients discontinued treatment after only 2–3 vaccination weeks due to rapid disease progression or death. Nineteen patients were available for first evaluation after 6 vaccinations; 8/19 evaluable patients attained stable disease (SD) or minor regression while 11/19 patients had progressive disease (PD), indicating an effect of p53-specific immune therapy. This was supported by: (1) a positive correlation between p53 expression of tumor and observed SD, (2) therapy induced p53 specific T cells in 4/7 patients with SD but only in 2/9 patients with PD, and (3) significant response associated changes in serum YKL-40 and IL-6 levels identifying these biomarkers as possible candidates for monitoring of response in connection with DC based cancer immunotherapy. In conclusion, a significant fraction of breast cancer patients obtained SD during p53-targeting DC therapy. Data encourage initiation of a randomized trial in p53 positive patients evaluating the impact on progression free survival.


Dendritic cells Breast cancer p53 peptides Immunotherapy Biomarkers 



This work was supported by grants from Dansk Kræftforsknings Fond, The Danish Cancer Society, Direktør Leo Nielsen og Hustru Karen Margrethe Nielsens Legat for Lægevidenskabelig Grundforskning, Michaelsen Fonden, and Aase og Ejnar Danielsens Fond.


  1. 1.
    Svane IM, Soot ML, Buus S, Johnsen HE (2003) Clinical application of dendritic cells in cancer vaccination therapy. APMIS 111:818–834PubMedCrossRefGoogle Scholar
  2. 2.
    Reid DC (2001) Dendritic cells and immunotherapy for malignant disease. Br J Haematol 112:874–887PubMedCrossRefGoogle Scholar
  3. 3.
    Fong L, Engleman EG (2000) Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18:245–273PubMedCrossRefGoogle Scholar
  4. 4.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811PubMedCrossRefGoogle Scholar
  5. 5.
    Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223:1–15PubMedCrossRefGoogle Scholar
  6. 6.
    Feuerstein B, Berger TG, Maczek C, Roder C, Schreiner D, Hirsch U, Haendle I, Leisgang W, Glaser A, Kuss O, Diepgen TL, Schuler G, Schuler-Thurner B (2000) A method for the production of cryopreserved aliquots of antigen- preloaded, mature dendritic cells ready for clinical use. J Immunol Methods 245:15–29PubMedCrossRefGoogle Scholar
  7. 7.
    Chada S, Mhashilkar A, Roth JA, Gabrilovich D (2003) Development of vaccines against self-antigens: the p53 paradigm. Curr Opin Drug Discov Devel 6:169–173PubMedGoogle Scholar
  8. 8.
    Soussi T (2000) The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci 910:121–137PubMedCrossRefGoogle Scholar
  9. 9.
    Chang F, Syrjanen S, Syrjanen K (1995) Implications of the p53 tumor-suppressor gene in clinical oncology. J Clin Oncol 13:1009–1022PubMedGoogle Scholar
  10. 10.
    Chariyalertsak S, Cheirsilpa A, Chindavijak K (1998) Prognostic importance of p53 and c-erbB-2 oncoproteins overexpression in patients with breast cancer. J Med Assoc Thai 81:698–704PubMedGoogle Scholar
  11. 11.
    Hoffmann TK, Donnenberg AD, Finkelstein SD, Donnenberg VS, Friebe-Hoffmann U, Myers EN, Appella E, DeLeo AB, Whiteside TL (2002) Frequencies of tetramer+ T cells specific for the wild-type sequence p53 (264–272) peptide in the circulation of patients with head and neck cancer. Cancer Res 62:3521–3529PubMedGoogle Scholar
  12. 12.
    Tilkin AF, Lubin R, Soussi T, Lazar V, Janin N, Mathieu MC, Lefrere I, Carlu C, Roy M, Kayibanda M (1995) Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer. Eur J Immunol 25:1765–1769PubMedCrossRefGoogle Scholar
  13. 13.
    Cicinnati VR, Zhang X, Yu Z, Ferencik S, Schmitz KJ, Dworacki G, Kaczmarek E, Oldhafer K, Frilling A, Baba HA, Schmid KW, Grosse-Wilde H, Broelsch CE, DeLeo AB, Gerken G, Beckebaum S (2006) Increased frequencies of CD8+ T lymphocytes recognizing wild-type p53-derived epitopes in peripheral blood correlate with presence of epitope loss tumor variants in patients with hepatocellular carcinoma. Int J Cancer 119:2851–2860PubMedCrossRefGoogle Scholar
  14. 14.
    Black AP, Bailey A, Jones L, Turner RJ, Hollowood K, Ogg GS (2005) p53-specific CD8+ T-cell responses in individuals with cutaneous squamous cell carcinoma. Br J Dermatol 153:987–991PubMedCrossRefGoogle Scholar
  15. 15.
    Lutzker SG, Lattime EC (2001) Use of dendritic cells to immunize against cancers overexpressing p53. Clin Cancer Res 7:2–4PubMedGoogle Scholar
  16. 16.
    Nikitina EY, Clark JI, Van Beynen J, Chada S, Virmani AK, Carbone DP, Gabrilovich DI (2001) Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients. Clin Cancer Res 7:127–135PubMedGoogle Scholar
  17. 17.
    Petersen TR, Buus S, Brunak S, Nissen MH, Sherman LA, Claesson MH (2001) Identification and design of p53-derived HLA-A2-binding peptides with increased CTL immunogenicity. Scand J Immunol 53:357–364PubMedCrossRefGoogle Scholar
  18. 18.
    Barfoed AM, Petersen TR, Kirkin AF, Thor SP, Claesson MH, Zeuthen J (2000) Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells In vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein. Scand J Immunol 51:128–133PubMedCrossRefGoogle Scholar
  19. 19.
    Ropke M, Hald J, Guldberg P, Zeuthen J, Norgaard L, Fugger L, Svejgaard A, Van der BS, Nijman HW, Melief CJ, Claesson MH (1996) Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci USA 93:14704–14707PubMedCrossRefGoogle Scholar
  20. 20.
    Svane IM, Pedersen AE, Johnsen HE, Nielsen D, Kamby C, Gaarsdal E, Nikolajsen K, Buus S, Claesson MH (2004) Vaccination with p53-peptide-pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53:633–641PubMedCrossRefGoogle Scholar
  21. 21.
    Kishimoto T (1989) The biology of interleukin-6. Blood 74:1–10PubMedGoogle Scholar
  22. 22.
    Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA (2006) Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomarkers Prev 15:194–202PubMedCrossRefGoogle Scholar
  23. 23.
    Basolo F, Fiore L, Fontanini G, Conaldi PG, Calvo S, Falcone V, Toniolo A (1996) Expression of and response to interleukin 6 (IL6) in human mammary tumors. Cancer Res 56:3118–3122PubMedGoogle Scholar
  24. 24.
    Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, Blay JY (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92:4778–4791PubMedGoogle Scholar
  25. 25.
    Jee SH, Shen SC, Chiu HC, Tsai WL, Kuo ML (2001) Overexpression of interleukin-6 in human basal cell carcinoma cell lines increases anti-apoptotic activity and tumorigenic potency. Oncogene 20:198–208PubMedCrossRefGoogle Scholar
  26. 26.
    Recklies AD, White C, Ling H (2002) The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J 365:119–126PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang GJ, Adachi I (1999) Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res 19:1427–1432PubMedGoogle Scholar
  28. 28.
    Jensen BV, Johansen JS, Price PA (2003) High levels of serum HER-2/neu and YKL-40 independently reflect aggressiveness of metastatic breast cancer. Clin Cancer Res 9:4423–4434PubMedGoogle Scholar
  29. 29.
    Pedersen AE, Thorn M, Gad M, Walter MR, Johnsen HE, Gaarsdal E, Nikolajsen K, Buus S, Claesson MH, Svane IM (2005) Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination. Scand J Immunol 61:147–156PubMedCrossRefGoogle Scholar
  30. 30.
    Alexander J, Fikes J, Hoffman S, Franke E, Sacci J, Appella E, Chisari FV, Guidotti LG, Chesnut RW, Livingston B, Sette A (1998) The optimization of helper T lymphocyte (HTL) function in vaccine development. Immunol Res 18:79–92PubMedGoogle Scholar
  31. 31.
    Theobald M, Biggs J, Hernandez J, Lustgarten J, Labadie C, Sherman LA (1997) Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J Exp Med 185:833–841PubMedCrossRefGoogle Scholar
  32. 32.
    Wurtzen PA, Claesson MH (2002) A HLA-A2 restricted human CTL line recognizes a novel tumor cell expressed p53 epitope. Int J Cancer 99:568–572PubMedCrossRefGoogle Scholar
  33. 33.
    Wurtzen PA, Pedersen LO, Poulsen HS, Claesson MH (2001) Specific killing of P53 mutated tumor cell lines by a cross-reactive human HLA-A2-restricted P53-specific CTL line. Int J Cancer 93:855–861PubMedCrossRefGoogle Scholar
  34. 34.
    James K, Eisenhauer E, Christian M, Terenziani M, Vena D, Muldal A, Therasse P (1999) Measuring response in solid tumors: unidimensional versus bidimensional measurement. J Natl Cancer Inst 91:523–528PubMedCrossRefGoogle Scholar
  35. 35.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  36. 36.
    Harvey S, Weisman M, O’Dell J, Scott T, Krusemeier M, Visor J, Swindlehurst C (1998) Chondrex: new marker of joint disease. Clin Chem 44:509–516PubMedGoogle Scholar
  37. 37.
    Garcia-Tunon I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M (2006) Cell cycle control related proteins (p53, p21, and Rb) and transforming growth factor beta (TGFbeta) in benign and carcinomatous (in situ and infiltrating) human breast: implications in malignant transformations. Cancer Invest 24:119–125PubMedCrossRefGoogle Scholar
  38. 38.
    Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A, Pawitan Y, Hall P, Klaar S, Liu ET, Bergh J (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555PubMedCrossRefGoogle Scholar
  39. 39.
    Andersen MH, Pedersen LO, Becker JC, Straten PT (2001) Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 61:869–872PubMedGoogle Scholar
  40. 40.
    Reker S, Meier A, Holten-Andersen L, Svane IM, Becker JC, Straten PP, Andersen MH (2004) Identification of novel survivin-derived CTL epitopes. Cancer Biol Ther 3:173–179PubMedGoogle Scholar
  41. 41.
    Brunsvig PF, Aamdal S, Gjertsen MK, Kvalheim G, Markowski-Grimsrud CJ, Sve I, Dyrhaug M, Trachsel S, Moller M, Eriksen JA, Gaudernack G (2006) Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother 55:1553–1564PubMedCrossRefGoogle Scholar
  42. 42.
    Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N, Bepler G, Simon G, Janssen W, Lee JH, Menander K, Chada S, Gabrilovich DI (2006) Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12:878–887PubMedCrossRefGoogle Scholar
  43. 43.
    Carbone DP, Ciernik IF, Kelley MJ, Smith MC, Nadaf S, Kavanaugh D, Maher VE, Stipanov M, Contois D, Johnson BE, Pendleton CD, Seifert B, Carter C, Read EJ, Greenblatt J, Top LE, Kelsey MI, Minna JD, Berzofsky JA (2005) Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome. J Clin Oncol 23:5099–5107PubMedCrossRefGoogle Scholar
  44. 44.
    Menon AG, Kuppen PJ, van der Burg SH, Offringa R, Bonnet MC, Harinck BI, Tollenaar RA, Redeker A, Putter H, Moingeon P, Morreau H, Melief CJ, van de Velde CJ (2003) Safety of intravenous administration of a canarypox virus encoding the human wild-type p53 gene in colorectal cancer patients. Cancer Gene Ther 10:509–517PubMedCrossRefGoogle Scholar
  45. 45.
    van der Burg SH, Menon AG, Redeker A, Bonnet MC, Drijfhout JW, Tollenaar RA, van de Velde CJ, Moingeon P, Kuppen PJ, Offringa R, Melief CJ (2002) Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clin Cancer Res 8:1019–1027PubMedGoogle Scholar
  46. 46.
    Andersen MH, Gehl J, Reker S, Pedersen LO, Becker JC, Geertsen P, Thor SP (2003) Dynamic changes of specific T cell responses to melanoma correlate with IL-2 administration. Semin Cancer Biol 13:449–459PubMedCrossRefGoogle Scholar
  47. 47.
    Dhodapkar MV, Steinman RM (2002) Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 100:174–177PubMedCrossRefGoogle Scholar
  48. 48.
    Schmidt H, Johansen JS, Sjoegren P, Christensen IJ, Sorensen BS, Fode K, Larsen J, von der MH (2006) Serum YKL-40 predicts relapse-free and overall survival in patients with American Joint Committee on Cancer stage I and II melanoma. J Clin Oncol 24:798–804PubMedCrossRefGoogle Scholar
  49. 49.
    Schmidt H, Johansen JS, Gehl J, Geertsen PF, Fode K, von der MH (2006) Elevated serum level of YKL-40 is an independent prognostic factor for poor survival in patients with metastatic melanoma. Cancer 106:1130–1139PubMedCrossRefGoogle Scholar
  50. 50.
    Cintin C, Johansen JS, Christensen IJ, Price PA, Sorensen S, Nielsen HJ (2002) High serum YKL-40 level after surgery for colorectal carcinoma is related to short survival. Cancer 95:267–274PubMedCrossRefGoogle Scholar
  51. 51.
    Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4:11–22PubMedCrossRefGoogle Scholar
  52. 52.
    Salgado R, Junius S, Benoy I, Van DP, Vermeulen P, Van ME, Huget P, Dirix LY (2003) Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int J Cancer 103:642–646PubMedCrossRefGoogle Scholar
  53. 53.
    Yokoe T, Iino Y, Morishita Y (2000) Trends of IL-6 and IL-8 levels in patients with recurrent breast cancer: preliminary report. Breast Cancer 7:187–190PubMedCrossRefGoogle Scholar
  54. 54.
    Nishimura R, Nagao K, Miyayama H, Matsuda M, Baba K, Matsuoka Y, Yamashita H, Fukuda M, Mizumoto T, Hamamoto R (2000) An analysis of serum interleukin-6 levels to predict benefits of medroxyprogesterone acetate in advanced or recurrent breast cancer. Oncology 59:166–173PubMedCrossRefGoogle Scholar
  55. 55.
    McIlroy D, Gregoire M (2003) Optimizing dendritic cell-based anticancer immunotherapy: maturation state does have clinical impact. Cancer Immunol Immunother 52:583–591PubMedCrossRefGoogle Scholar
  56. 56.
    De Vries IJ, Eggert AA, Scharenborg NM, Vissers JL, Lesterhuis WJ, Boerman OC, Punt CJ, Adema GJ, Figdor CG (2002) Phenotypical and functional characterization of clinical grade dendritic cells. J Immunother 25:429–438PubMedCrossRefGoogle Scholar
  57. 57.
    O’Rourke MG, Johnson M, Lanagan C, See J, Yang J, Bell JR, Slater GJ, Kerr BM, Crowe B, Purdie DM, Elliott SL, Ellem KA, Schmidt CW (2003) Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother 52:387–395PubMedGoogle Scholar
  58. 58.
    de VI, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ, Croockewit S, Britten CM, Torensma R, Adema GJ, Figdor CG, Punt CJ (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100Google Scholar
  59. 59.
    Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, Kandemir A, Lee PP, Schuler G, Knop J, Enk AHA (2001) Comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93:243–251PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Inge Marie Svane
    • 1
    • 2
    Email author
  • Anders E. Pedersen
    • 5
  • Julia S. Johansen
    • 3
  • Hans E. Johnsen
    • 2
  • Dorte Nielsen
    • 1
  • Claus Kamby
    • 1
  • Svend Ottesen
    • 6
  • Eva Balslev
    • 4
  • Eva Gaarsdal
    • 2
  • Kirsten Nikolajsen
    • 2
  • Mogens H. Claesson
    • 5
  1. 1.Department of OncologyCopenhagen University HospitalHerlevDenmark
  2. 2.Center for Cancer Immune Therapy, Department of HematologyCopenhagen University HospitalHerlevDenmark
  3. 3.Department of RheumatologyCopenhagen University HospitalHerlevDenmark
  4. 4.Department of PathologyCopenhagen University HospitalHerlevDenmark
  5. 5.Department of Medical Anatomy, The Panum InstituteUniversity of CopenhagenCopenhagenDenmark
  6. 6.Department of OncologyRoskilde HospitalRoskildeDenmark

Personalised recommendations