Cancer Immunology, Immunotherapy

, Volume 56, Issue 9, pp 1417–1428 | Cite as

Interleukin 21 therapy increases the density of tumor infiltrating CD8+ T cells and inhibits the growth of syngeneic tumors

  • Henrik Søndergaard
  • Klaus S. Frederiksen
  • Peter Thygesen
  • Elisabeth D. Galsgaard
  • Kresten Skak
  • Paul E. G. Kristjansen
  • Niels Ødum
  • Michael Kragh
Original Article

Abstract

Interleukin (IL)-21 is a recently discovered cytokine in early clinical development, which has shown anti-tumor activity in various animal models. In the present study, we examine the anti-tumor activity of IL-21 protein therapy in two syngeneic tumor models and its effect on the density of tumor infiltrating T cells. We treated mice bearing established subcutaneous B16 melanomas or RenCa renal cell carcinomas with intraperitoneal (i.p.) or subcutaneous (s.c.) IL-21 protein therapy and subsequently scored the densities of tumor infiltrating CD4+ and CD8+ T cells by immunohistochemistry. Whereas both routes of IL-21 administration significantly inhibited growth of small, established RenCa and B16 tumors, only s.c. therapy significantly inhibited the growth of large, established tumors. We found a greater bioavailability and significant drainage of IL-21 to regional lymph nodes following s.c. administration, which could account for the apparent increase in anti-tumor activity. Specific depletion of CD8+ T cells with monoclonal antibodies completely abrogated the anti-tumor activity, whereas NK1.1+ cell depletion did not affect tumor growth. In accordance, both routes of IL-21 administration significantly increased the density of tumor infiltrating CD8+ T cells in both B16 and RenCa tumors; and in the RenCa model s.c. administration of IL-21 led to a significantly higher density of tumor infiltrating CD8+ T cells compared to i.p. administration. The densities of CD4+ T cells were unchanged following IL-21 treatments. Taken together, these data demonstrate that IL-21 protein has anti-tumor activity in established syngeneic tumors, and we show that IL-21 therapy markedly increases the density of tumor infiltrating CD8+ T cells.

Keywords

Interleukin-21 Tumor infiltrating lymphocytes Cancer Melanoma Renal cell carcinoma 

Abbreviations

IL-21

Interleukin 21

i.v.

Intravenous

i.p.

Intraperitoneal

s.c.

Subcutaneous

TILs

Tumor infiltrating lymphocytes

NK cells

Natural killer cells

CTLs

Cytotoxic T lymphocytes

AOI

Area of interest

AUC

Area under the curve

WT

Wild type

LN

Lymph node

IP-10

Interferon-inducible protein 10

MIG

Monokine induced by interferon gamma

I-TAC

Interferon-inducible T cell alpha chemoattractant

Notes

Acknowledgement

We would like to thank Heidi Winther, Bodil Andreasen, Birte Jørgensen and Kirsten Meeske for technical assistance with the experiments, and Mark Smyth for valuable discussion of the manuscript.

References

  1. 1.
    Alves NL, Arosa FA, van Lier RA (2005) IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells. J Immunol 175:755–762PubMedGoogle Scholar
  2. 2.
    Brady J, Hayakawa Y, Smyth MJ, Nutt SL (2004) IL-21 induces the functional maturation of murine NK cells. J Immunol 172:2048–2058PubMedGoogle Scholar
  3. 3.
    Brandt K, Bulfone-Paus S, Jenckel A, Foster DC, Paus R, Ruckert R (2003) Interleukin-21 inhibits dendritic cell-mediated T cell activation and induction of contact hypersensitivity in vivo. J Invest Dermatol 121:1379–1382PubMedCrossRefGoogle Scholar
  4. 4.
    Cappuccio A, Elishmereni M, Agur Z (2006) Cancer immunotherapy by interleukin-21: potential treatment strategies evaluated in a mathematical model. Cancer Res 66:7293–7300PubMedCrossRefGoogle Scholar
  5. 5.
    Chang CJ, Tai KF, Roffler S, Hwang LH (2004) The immunization site of cytokine-secreting tumor cell vaccines influences the trafficking of tumor-specific T lymphocytes and antitumor efficacy against regional tumors. J Immunol 173:6025–6032PubMedGoogle Scholar
  6. 6.
    Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310PubMedCrossRefGoogle Scholar
  7. 7.
    Comes A, Rosso O, Orengo AM, Di Carlo E, Sorrentino C, Meazza R, Piazza T, Valzasina B, Nanni P, Colombo MP, Ferrini S (2006) CD25+ regulatory T cell depletion augments immunotherapy of micrometastases by an IL-21-secreting cellular vaccine. J Immunol 176:1750–1758PubMedGoogle Scholar
  8. 8.
    Di Carlo E, Comes A, Orengo AM, Rosso O, Meazza R, Musiani P, Colombo MP, Ferrini S (2004) IL-21 induces tumor rejection by specific CTL and IFN-gamma-dependent CXC chemokines in syngeneic mice. J Immunol 172:1540–1547PubMedGoogle Scholar
  9. 9.
    Diederichsen AC, Hjelmborg JB, Christensen PB, Zeuthen J, Fenger C (2003) Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells. Cancer Immunol Immunother 52:423–428PubMedCrossRefGoogle Scholar
  10. 10.
    Furukawa J, Hara I, Nagai H, Yao A, Oniki S, Fujisawa M (2006) Interleukin-21 gene transfection into mouse bladder cancer cells results in tumor rejection through the cytotoxic T lymphocyte response. J Urol 176:1198–1203PubMedCrossRefGoogle Scholar
  11. 11.
    Geertsen PF, Gore ME, Negrier S, Tourani JM, von der MH (2004) Safety and efficacy of subcutaneous and continuous intravenous infusion rIL-2 in patients with metastatic renal cell carcinoma. Br J Cancer 90:1156–1162PubMedCrossRefGoogle Scholar
  12. 12.
    Haanen JB, Baars A, Gomez R, Weder P, Smits M, de Gruijl TD, von Blomberg BM, Bloemena E, Scheper RJ, van Ham SM, Pinedo HM, van den Eertwegh AJ (2006) Melanoma-specific tumor-infiltrating lymphocytes but not circulating melanoma-specific T cells may predict survival in resected advanced-stage melanoma patients. Cancer Immunol Immunother 55:451–458PubMedCrossRefGoogle Scholar
  13. 13.
    He H, Wisner P, Yang G, Hu HM, Haley D, Miller W, O’hara A, Alvord WG, Clegg CH, Fox BA, Urba WJ, Walker EB (2006) Combined IL-21 and Low-Dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model. J Transl Med 4:24PubMedCrossRefGoogle Scholar
  14. 14.
    Kasaian MT, Whitters MJ, Carter LL, Lowe LD, Jussif JM, Deng B, Johnson KA, Witek JS, Senices M, Konz RF, Wurster AL, Donaldson DD, Collins M, Young DA, Grusby MJ (2002) IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 16:559–569PubMedCrossRefGoogle Scholar
  15. 15.
    Krup OC, Kroll I, Bose G, Falkenberg FW (1999) Cytokine depot formulations as adjuvants for tumor vaccines. I. Liposome-encapsulated IL-2 as a depot formulation. J Immunother 22:525–538PubMedCrossRefGoogle Scholar
  16. 16.
    Leonard WJ, Spolski R (2005) Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol 5:688–698PubMedCrossRefGoogle Scholar
  17. 17.
    Li Y, Bleakley M, Yee C (2005) IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 175:2261–2269PubMedGoogle Scholar
  18. 18.
    Lipponen PK, Eskelinen MJ, Jauhiainen K, Harju E, Terho R (1992) Tumour infiltrating lymphocytes as an independent prognostic factor in transitional cell bladder cancer. Eur J Cancer 29A:69–75PubMedGoogle Scholar
  19. 19.
    Ma HL, Whitters MJ, Konz RF, Senices M, Young DA, Grusby MJ, Collins M, Dunussi-Joannopoulos K (2003) IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFN-gamma. J Immunol 171:608–615PubMedGoogle Scholar
  20. 20.
    Moroz A, Eppolito C, Li Q, Tao J, Clegg CH, Shrikant PA (2004) IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 173:900–999PubMedGoogle Scholar
  21. 21.
    Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494PubMedGoogle Scholar
  22. 22.
    Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666PubMedCrossRefGoogle Scholar
  23. 23.
    Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J, Schrader S, Burkhead S, Heipel M, Brandt C, Kuijper JL, Kramer J, Conklin D, Presnell SR, Berry J, Shiota F, Bort S, Hambly K, Mudri S, Clegg C, Moore M, Grant FJ, Lofton-Day C, Gilbert T, Rayond F, Ching A, Yao L, Smith D, Webster P, Whitmore T, Maurer M, Kaushansky K, Holly RD, Foster D (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57–63PubMedCrossRefGoogle Scholar
  24. 24.
    Parrish-Novak J, Foster DC, Holly RD, Clegg CH (2002) Interleukin-21 and the IL-21 receptor: novel effectors of NK and T cell responses. J Leukoc Biol 72:856–863PubMedGoogle Scholar
  25. 25.
    Petrulio CA, Kim-Schulze S, Kaufman HL (2006) The tumour microenvironment and implications for cancer immunotherapy. Expert Opin Biol Ther 6:671–684PubMedCrossRefGoogle Scholar
  26. 26.
    Roda JM, Parihar R, Lehman A, Mani A, Tridandapani S, Carson WE III (2006) Interleukin-21 enhances NK cell activation in response to antibody-coated targets. J Immunol 177:120–129PubMedGoogle Scholar
  27. 27.
    Romagnani P, Annunziato F, Lazzeri E, Cosmi L, Beltrame C, Lasagni L, Galli G, Francalanci M, Manetti R, Marra F, Vanini V, Maggi E, Romagnani S (2001) Interferon-inducible protein 10, monokine induced by interferon gamma, and interferon-inducible T-cell alpha chemoattractant are produced by thymic epithelial cells and attract T-cell receptor (TCR) alphabeta+ CD8+ single-positive T cells, TCRgammadelta+ T cells, and natural killer-type cells in human thymus. Blood 97:601–607PubMedCrossRefGoogle Scholar
  28. 28.
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543PubMedCrossRefGoogle Scholar
  29. 29.
    Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM, Manns MP, Greten TF (2003) Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer 103:205–211PubMedCrossRefGoogle Scholar
  30. 30.
    Schumacher K, Haensch W, Roefzaad C, Schlag PM (2001) Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61:3932–3936PubMedGoogle Scholar
  31. 31.
    Sivori S, Cantoni C, Parolini S, Marcenaro E, Conte R, Moretta L, Moretta A (2003) IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur J Immunol 33:3439–3447PubMedCrossRefGoogle Scholar
  32. 32.
    Smyth MJ, Crowe NY, Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459–463PubMedCrossRefGoogle Scholar
  33. 33.
    Smyth MJ, Kelly JM, Baxter AG, Korner H, Sedgwick JD (1998) An essential role for tumor necrosis factor in natural killer cell-mediated tumor rejection in the peritoneum. J Exp Med 188:1611–1619PubMedCrossRefGoogle Scholar
  34. 34.
    Smyth MJ, Wallace ME, Nutt SL, Yagita H, Godfrey DI, Hayakawa Y (2005) Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J Exp Med 201:1973–1985PubMedCrossRefGoogle Scholar
  35. 35.
    Takaki R, Hayakawa Y, Nelson A, Sivakumar PV, Hughes S, Smyth MJ, Lanier LL (2005) IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 175:2167–2173PubMedGoogle Scholar
  36. 36.
    Toomey JA, Gays F, Foster D, Brooks CG (2003) Cytokine requirements for the growth and development of mouse NK cells in vitro. J Leukoc Biol 74:233–242PubMedCrossRefGoogle Scholar
  37. 37.
    Ugai S, Shimozato O, Kawamura K, Wang YQ, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M (2003) Expression of the interleukin-21 gene in murine colon carcinoma cells generates systemic immunity in the inoculated hosts. Cancer Gene Ther 10:187–192PubMedCrossRefGoogle Scholar
  38. 38.
    Wang G, Tschoi M, Spolski R, Lou Y, Ozaki K, Feng C, Kim G, Leonard WJ, Hwu P (2003) In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 63:9016–9022PubMedGoogle Scholar
  39. 39.
    Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN, Restifo NP, Berzofsky JA, Leonard WJ (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201:139–148PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Henrik Søndergaard
    • 1
  • Klaus S. Frederiksen
    • 2
  • Peter Thygesen
    • 3
  • Elisabeth D. Galsgaard
    • 1
  • Kresten Skak
    • 1
  • Paul E. G. Kristjansen
    • 4
  • Niels Ødum
    • 5
  • Michael Kragh
    • 1
  1. 1.Department of Cancer Pharmacology, Biopharmaceuticals Research UnitNovo Nordisk A/SMåløvDenmark
  2. 2.Department of Molecular Genetics, Biopharmaceuticals Research UnitNovo Nordisk A/SBagsværdDenmark
  3. 3.Department of Exploratory ADME, Biopharmaceuticals Research UnitNovo Nordisk A/SMåløvDenmark
  4. 4.Department of Development Projects 05Novo Nordisk A/SBagsværdDenmark
  5. 5.Department of Molecular Biology and Physiology and Department of Medical Microbiology and ImmunologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations