Advertisement

Cancer Immunology, Immunotherapy

, Volume 56, Issue 7, pp 1107–1117 | Cite as

CD20-specific antibody-targeted chemotherapy of non-Hodgkin’s B-cell lymphoma using calicheamicin-conjugated rituximab

  • John F. DiJoseph
  • Maureen M. Dougher
  • Douglas C. Armellino
  • Lyka Kalyandrug
  • Arthur Kunz
  • Erwin R. Boghaert
  • Philip R. Hamann
  • Nitin K. DamleEmail author
Original Article

Abstract

Tumor-targeted delivery of a potent cytotoxic agent, calicheamicin, using its immunoconjugates is a clinically validated therapeutic strategy. Rituximab is a human CD20-specific chimeric antibody extensively used in B-NHL therapy. We investigated whether conjugation to calicheamicin can improve the anti-tumor activity of rituximab against human B-cell lymphoma (BCL) xenografts in preclinical models. BCL cells were cultured with rituximab or its calicheamicin conjugates and their in vitro growth was monitored. BCL cells were injected s.c. to establish localized xenografts in nude mice or i.v. to establish disseminated BCL in severe combined immunodeficient (scid) mice. I.p. treatment with rituximab or its calicheamicin conjugates was initiated and its effect on s.c. BCL growth or survival of mice with disseminated BCL was monitored. Conjugation of calicheamicin to rituximab vastly enhanced its growth inhibitory activity against BCL in vitro. Conjugation to calicheamicin had no deleterious effect on the effector functional activity of rituximab. Calicheamicin conjugated to rituximab with an acid-labile linker exhibited greater anti-tumor activity against s.c. BCL xenografts and improved survival of mice with disseminated BCL over that of unconjugated rituximab. Anti-tumor activities of rituximab conjugated to calicheamicin via an acid-stable linker were similar to that of unconjugated rituximab. Superior anti-tumor efficacy exhibited by a calicheamicin immunoconjugate of rituximab with an acid-labile linker over that of rituximab demonstrates the therapeutic potential of CD20-specific antibody-targeted chemotherapy strategy in the treatment of B-NHL.

Keywords

Calicheamicin Rituximab CD20 Immunoconjugates Anti-tumor 

Abbreviations

BCL

B-cell lymphoma

CalichDM

N-Acetyl gamma calicheamicin dimethyl derivative(s)

CalichDMH

CalichDM hydrazide

Notes

Acknowledgments

We thank Fred Immermann of Wyeth Biometrics Research for statistical analysis of the data.

References

  1. 1.
    Damle NK (2004) Tumor-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther 4:1445–1452PubMedCrossRefGoogle Scholar
  2. 2.
    Bross PF, Beitz J, Chen G et al (2001) Gemtuzumab ozogamicin: approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496PubMedGoogle Scholar
  3. 3.
    Sievers EL, Appelbaum FR, Spielberger RT et al (1999) Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93:3678–3684PubMedGoogle Scholar
  4. 4.
    Sievers E, Larson R, Stadmauer E et al (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19:3244–3254PubMedGoogle Scholar
  5. 5.
    Hamann PR, Hinman LM, Hollander I et al (2002) A potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconj Chem 13:47–58CrossRefGoogle Scholar
  6. 6.
    Lee M, Dunne T, Chang C et al. (1992) Calicheamicins, a novel family of antibiotics. 4. Structural elucidations of calicheamicins. J Am Chem Soc 114:985–987CrossRefGoogle Scholar
  7. 7.
    Zein N, Sinha A, McGahren W, Ellestad G (1988) Calicheamicin γI: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240:1198–1201PubMedCrossRefGoogle Scholar
  8. 8.
    Grillo-Lopez A (2003) Rituximab (Rituxan/MabThera): the first decade (1993–2003). Expert Rev Anticancer Ther 3:767–779PubMedCrossRefGoogle Scholar
  9. 9.
    Ghobrial I, Witzig T (2004) Radioimmunotherapy: a new treatment modality for B-cell non-Hodgkin’s lymphoma. Oncology 18:623–630PubMedGoogle Scholar
  10. 10.
    Uchida J, Hamaguchi Y, Oliver JA et al (2004) The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 199:1659–1669PubMedCrossRefGoogle Scholar
  11. 11.
    Gaetano ND, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587PubMedGoogle Scholar
  12. 12.
    Manches O, Lui G, Chaperot L et al (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101:949–954PubMedCrossRefGoogle Scholar
  13. 13.
    Hainsworth JD, Litchy S, Burris HA et al (2002) Rituximab as first-line and maintenance therapy for patients with indolent non-Hodgkin’s lymphoma. J Clin Oncology 20:4261–4267CrossRefGoogle Scholar
  14. 14.
    Edwards JC, Szczepanski L, Szechinski J et al (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581PubMedCrossRefGoogle Scholar
  15. 15.
    DiJoseph JF, Armellino DC, Boghaert E et al (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B lymphoid malignancies. Blood 103:1807–1814PubMedCrossRefGoogle Scholar
  16. 16.
    Advani A, Giné E, Gisselbrecht C et al (2005) Preliminary report of a phase 1 study of cmc-544, an antibody-targeted chemotherapy agent, in patients with b-cell non-Hodgkin’s lymphoma (NHL). Blood 106(11): abstract No. 230Google Scholar
  17. 17.
    DiJoseph JF, Dougher MM, Kalyandrug LB et al (2006) Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res 12:242–249PubMedCrossRefGoogle Scholar
  18. 18.
    DiJoseph JF, Goad ME, Dougher MM et al (2004) Potent and specific anti-tumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res 10:8620–8629PubMedCrossRefGoogle Scholar
  19. 19.
    Flavell DJ, Noss A, Pulford KAF, Ling N, Flavell SU (1997) Systemic therapy with 3BIT, a triple combination cocktail of anti-CD19, -CD22, and -CD38-saporin immunotoxins, is curative of human B-cell lymphoma in severe combined immunodeficient mice. Cancer Res 57:4824–4829PubMedGoogle Scholar
  20. 20.
    Flavell DJ, Boehm DA, Emery L, Noss A, Ramsay A, Flavell SU (1995) Therapy of human B-cell lymphoma bearing SCID mice is more effective with anti-CD19- and anti-CD38-saporin immunotoxins used alone in combination than with either immunotoxin alone. Int J Cancer 62:337–344PubMedCrossRefGoogle Scholar
  21. 21.
    Hinman LM, Hamann PR, Wallace R, Menendez AT, Dur FE, Upeslacis J (2003) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53:3336–3342Google Scholar
  22. 22.
    Hamann P, Hinman L, Beyer C et al (2002) An anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconj. Chem 13:40–46CrossRefGoogle Scholar
  23. 23.
    DiJoseph JF, Popplewell A, Tickle S et al (2005) Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 54:11–24PubMedCrossRefGoogle Scholar
  24. 24.
    Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ (1989) Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res 49:4906–4912PubMedGoogle Scholar
  25. 25.
    Vangeepuram N, Ong GL, Mattes MJ (1997) Processing of antibodies bound to B-cell lymphomas and lymphoblastoid cell lines. Cancer 80(Suppl):2425–2430PubMedCrossRefGoogle Scholar
  26. 26.
    Law CL, Cerveny CG, Gordon KA et al (2004) Efficient elimination of B-lineage lymphomas by anti-CD20–Auristatin conjugates. Clin Cancer Res 10:7842–7851PubMedCrossRefGoogle Scholar
  27. 27.
    Vervoordeldonk SF, Merle PA, van Leeuwen EF, van der Schoot CE, von dem Borne AE, Slaper-Cortenbach IC (1994) Fc gamma receptor II (CD32) on malignant B cells influences modulation induced by anti-CD19 monoclonal antibody. Blood 83:1632–1639PubMedGoogle Scholar
  28. 28.
    Van Den Herik-Oudijk IE, Westerdaal NA, Henriquez NV, Capel PJ, Van De Winkel JG (1994) Functional analysis of human Fc gamma RII (CD32) isoforms expressed in B lymphocytes. J Immunol 152:574–585Google Scholar
  29. 29.
    Flieger D, Renoth S, Beier I, Sauerbruch T, Schmidt-Wolf I (2000) Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol 205:55–63CrossRefGoogle Scholar
  30. 30.
    Miettinen HM, Matter K, Hunzinker W et al (1992) Fc receptor endocytosis is controlled by a cytoplasmic domain determinant that actively prevents coated pit localization. J Cell Biol 116:875–888PubMedCrossRefGoogle Scholar
  31. 31.
    Costello LC, Franklin RB (2005) ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Mol Cell Biochem 280:1–8PubMedCrossRefGoogle Scholar
  32. 32.
    Boghaert ER, Khanke K, Sridharan L et al (2006) Tumoricidal effect of calicheamicin immuno-conjugates using a passive targeting strategy. Int J Oncol 28:675–684PubMedGoogle Scholar
  33. 33.
    Harder T, Engelhardt (2004) Membrane domains in lymphocytes-from lipid rafts to protein scaffolds. Traffic 5:265–275Google Scholar
  34. 34.
    Polyak MJ, Tailor SH, Deans JP (1998) Identification of a cytoplasmic region of CD20 required for its redistribution to a detergent-insoluble membrane compartment. J Immunol 161:3242–3248PubMedGoogle Scholar
  35. 35.
    Fujimoto M, Kuwano Y, Wananabe R et al (2006) B cell antigen receptor and CD40 differentially regulate CD22 tyrosine phosphorylation. J Immunol 176:873–879PubMedGoogle Scholar
  36. 36.
    Gaetano ND, Cittera E, Nota R et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587PubMedGoogle Scholar
  37. 37.
    Cragg MS, Glennie MJ (2004) Antibody specificity controls effector mechanisms of anti-CD20 reagents. Blood 103:2738–2743 PubMedCrossRefGoogle Scholar
  38. 38.
    Cragg MS, Morgan SM, Claude Chan HT et al (2003) Complement-mediated lysis by anti-CD20 mAb correlated with segregation into lipid rafts. Blood 101:1045–1052PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • John F. DiJoseph
    • 1
  • Maureen M. Dougher
    • 1
  • Douglas C. Armellino
    • 1
  • Lyka Kalyandrug
    • 1
  • Arthur Kunz
    • 2
  • Erwin R. Boghaert
    • 1
  • Philip R. Hamann
    • 2
  • Nitin K. Damle
    • 1
    Email author
  1. 1.Oncology DiscoveryWyeth ResearchPearl RiverUSA
  2. 2.Chemical and Screening SciencesWyeth ResearchPearl RiverUSA

Personalised recommendations