Cancer Immunology, Immunotherapy

, Volume 56, Issue 7, pp 1119–1131 | Cite as

Small numbers of residual tumor cells at the site of primary inoculation are critical for anti-tumor immunity following challenge at a secondary location

  • Takashi Kakinuma
  • Hari Nadiminti
  • Anke S. Lonsdorf
  • Takashi Murakami
  • Bradford A. Perez
  • Hisataka Kobayashi
  • Steven E. Finkelstein
  • Gulnar Pothiawala
  • Yasmine Belkaid
  • Sam T. Hwang
Original Article


Luciferase-transduced B16 murine melanoma cells (luc-B16) inoculated in ear skin do not form tumors but prevent tumor formation by luc-B16 cells injected into the footpad. To determine the requirements for such immunity, we followed the fate of luc-B16 cells following ear injection. Surprisingly, small numbers of viable luc-B16 cells were detected in tumor-free mouse skin for up to 60 days post-inoculation. After 1 week, the number of Foxp3+CD4+CD25+ T cells (along with foxp3 mRNA expression) increased rapidly in the injected ear skin. Residual tumor cells in ears were reduced in mice treated with anti-CD25 mAb and in CD4-deficient mice, but increased in CD8-deficient mice. Strikingly, the loss of luc-B16 cells in the ear skin, either spontaneously or following amputation of the injected ear, resulted in significantly enhanced tumor formation by parental and luciferase-expressing B16 cells after footpad injection. These studies suggest that small numbers of tumor cells (possibly regulated by CD4+CD25+ regulatory T cells expressing Foxp3) are required for effective host anti-tumor responses at alternate inoculation sites.


Tumorigenesis Regulatory T cells CD4 



Regulatory T cells




Cytolytic T lymphocytes (cells)



We wish to thank Dr. Mark C. Udey (NCI) and Dr. Nicholas Restifo (NCI) for helpful comments and suggestions. Dr. Seth Steinberg (NCI) generously aided with statistical advice. This work was supported by funds from the Center for Cancer Research, National Cancer Institute. HN was supported by Clinical Research Training Program, NIH, and GP was supported by a Howard Hughes Medical Student Fellowship.


  1. 1.
    Antony PA, Restifo NP (2002) Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy? J Immunother 25:202–206PubMedCrossRefGoogle Scholar
  2. 2.
    Bashford E, Murray J, Haaland M (1908) Resistance and suceptibility to inoculated cancer. In: Bashford E (ed) Third scientific report on the investigations of the imperial cancer research fund. Taylor & Francis, London pp 359–397Google Scholar
  3. 3.
    Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA et al (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194:1497–1506PubMedCrossRefGoogle Scholar
  4. 4.
    Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507PubMedCrossRefGoogle Scholar
  5. 5.
    Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D et al (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9:998–1008PubMedGoogle Scholar
  6. 6.
    Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193:F23–F26PubMedCrossRefGoogle Scholar
  7. 7.
    Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949PubMedCrossRefGoogle Scholar
  8. 8.
    Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633PubMedCrossRefGoogle Scholar
  9. 9.
    Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543PubMedCrossRefGoogle Scholar
  10. 10.
    Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, et al. (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24:363–373PubMedCrossRefGoogle Scholar
  11. 11.
    Ehrlich P (1906) Collected studies on immunity. Wiley, LondonGoogle Scholar
  12. 12.
    Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nature (New Biol) 242:148–149Google Scholar
  13. 13.
    Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6:331–337PubMedCrossRefGoogle Scholar
  14. 14.
    Franco M, Bustuoabad OD, di Gianni PD, Goldman A, Pasqualini CD, Ruggiero RA (1996) A serum-mediated mechanism for concomitant resistance shared by immunogenic and non-immunogenic murine tumours. Br J Cancer 74:178–186PubMedGoogle Scholar
  15. 15.
    Kobayashi H, Kawamoto S, Choyke PL, Sato N, Knopp MV, Star RA et al (2003) Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med 50:758–766PubMedCrossRefGoogle Scholar
  16. 16.
    Kobayashi H, Kawamoto S, Star RA, Waldmann TA, Tagaya Y, Brechbiel MW (2003) Micro-magnetic resonance lymphangiography in mice using a novel dendrimer-based magnetic resonance imaging contrast agent. Cancer Res 63:271–276PubMedGoogle Scholar
  17. 17.
    Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685PubMedCrossRefGoogle Scholar
  18. 18.
    Ljunggren HG, Karre K (1985) Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med 162:1745–1759PubMedCrossRefGoogle Scholar
  19. 19.
    Murakami T, Cardones AR, Finkelstein SE, Restifo NP, Klaunberg BA, Nestle FO et al (2003) Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med 198:1337–1347PubMedCrossRefGoogle Scholar
  20. 20.
    Nagai H, Horikawa T, Hara I, Fukunaga A, Oniki S, Oka M et al (2004) In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp Dermatol 13:613–620PubMedCrossRefGoogle Scholar
  21. 21.
    Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J et al (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411:1058–1064PubMedCrossRefGoogle Scholar
  22. 22.
    Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133PubMedGoogle Scholar
  23. 23.
    O’Reilly M, Rosenthal R, Sage E, Smith S, Holmgren L, Moses M et al (1993) The suppression of tumor metastases by a primary tumor. Surg Forum 44:474–478Google Scholar
  24. 24.
    Ribas A, Timmerman JM, Butterfield LH, Economou JS (2003) Determinant spreading and tumor responses after peptide-based cancer immunotherapy. Trends Immunol 24:58–61PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenberg SA (2004) Shedding light on immunotherapy for cancer. N Engl J Med 350:1461–1463PubMedCrossRefGoogle Scholar
  26. 26.
    Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162:2472–2475PubMedGoogle Scholar
  27. 27.
    Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218PubMedGoogle Scholar
  28. 28.
    Sugarbaker E, Thornthwaite J, Ketcham A (1977) Inhibitor effect of a primary tumor on metastasis. In: Day S et al (eds) Progress in cancer research and therapy. Raven, New York pp 227–240Google Scholar
  29. 29.
    Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194:823–832PubMedCrossRefGoogle Scholar
  30. 30.
    Topalian SL, Solomon D, Rosenberg SA (1989) Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol 142:3714–3725PubMedGoogle Scholar
  31. 31.
    Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Houghton AN (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782PubMedCrossRefGoogle Scholar
  32. 32.
    Wiley H, Gonzalez EB, Maki W, Wu M, Hwang ST (2001) Expression of CC chemokine receptor-7 (CCR7) and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93:1638–1643PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Takashi Kakinuma
    • 4
  • Hari Nadiminti
    • 4
  • Anke S. Lonsdorf
    • 4
  • Takashi Murakami
    • 4
  • Bradford A. Perez
    • 4
  • Hisataka Kobayashi
    • 2
  • Steven E. Finkelstein
    • 3
  • Gulnar Pothiawala
    • 1
  • Yasmine Belkaid
    • 1
  • Sam T. Hwang
    • 4
  1. 1.Laboratory of Parasitic DiseasesNIAIDBethesdaUSA
  2. 2.Metabolism BranchCenter for Cancer Research, NCIBethesdaUSA
  3. 3.Surgery BranchCenter for Cancer Research, NCIBethesdaUSA
  4. 4.Dermatology BranchCenter for Cancer Research, NCIBethesdaUSA

Personalised recommendations