Cancer Immunology, Immunotherapy

, Volume 56, Issue 6, pp 783–795 | Cite as

Immunoscreening of a cutaneous T-cell lymphoma library for plasma membrane proteins

  • Mieun Lee
  • Claudia Kistler
  • Tanja B. Hartmann
  • Fang Li
  • Reinhard Dummer
  • Edgar Dippel
  • Nina Booken
  • Claus D. Klemke
  • Dirk Schadendorf
  • Stefan B. Eichmüller
Original Article

Abstract

Cutaneous T-cell lymphomas (CTCL) belong to non-Hodgkin lymphomas, which are primarily manifested in the skin and mostly exhibit a T-helper memory phenotype. Mycosis fungoides (MF) and the leukemic variant Sézary syndrome (SzS) are the most common forms of CTCL. The aim of this study was to identify CTCL surface proteins with a tumor specific expression profile. A plasma membrane enriched fraction of the CTCL cell line HuT78 was used for immunization of two rabbits. Subsequently, a CTCL cDNA phage library was screened by a new variant of the SEREX method (serological identification of antigens by recombinant expression cloning) using the polyspecific rabbit antisera instead of patients’ sera. Isolated reactive transfectants were sequenced and 42 different genes identified including four known plasma membrane proteins: Ligatin, HLA-A, integrin α4 and MT5-MMP. The level of transcripts of the matrix metalloproteinase MT5-MMP was diminished in MF tumor specimens. MT5-MMP normally occurs in several different protein variants. Western blot analysis revealed that activated MT5-MMPs were reduced in tumor specimens, whereas the amounts of most of the inactivated variants were unchanged. The amount of mRNA coding for the adhesion protein integrin α4 was not altered in tumor specimens in comparison to controls when analyzed by quantitative real-time PCR analysis. Ku86, known to be predominantly located in the nucleus and cytosol, was frequently detected during the SEREX screening. Western blot analysis revealed higher protein amounts of Ku86 in HuT78 than in control cells. In addition, we could show, that Ku86 can also be detected in lipid rafts of CTCL cells as it has been described for other tumor types. Thus, Ku86 might be involved in homo- and heterotypic adhesion steps of CTCL tumor cells and might protect these cells against apoptosis triggered by irradiation as it was suggested for multiple myeloma cells. The design of this study enabled screening for all proteins on the plasma membrane, irrespectively of whether these are directly anchored within the membrane or associated with other membrane proteins. Further analysis will unravel whether the list of identified proteins harbors candidates, which might be accessible for antibodies from outside the cell.

Keywords

SEREX MT5-MMP Integrin α4 Ku86 Lipid rafts 

Abbreviations

CTCL

Cutaneous T cell lymphoma

SEREX

Serological identification of antigens by recombinant expressed cloning

MT5-MMP

Membrane-type 5 matrix metalloproteinase

Notes

Acknowledgments

We are very grateful to Dr. Eva Frei (German Cancer Research Center, E080) for her help and support in the enrichment of membrane fractions, to Elke Dickes and Anita Heinzelmann for their excellent technical assistance, to Dr. K. Kaltoft (Aarhus University Hospital, University of Aarhus, Denmark) for providing us the cell lines SeAx and MyLa, and to Dr. A. Bensussan (Medical Faculty, Creteil, France) for the cell line Cou-L3.

References

  1. 1.
    Berger CL, Tigelaar R, Cohen J, Mariwalla K, Trinh J, Wang N, Edelson RL (2005) Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 105:1640–1647PubMedCrossRefGoogle Scholar
  2. 2.
    Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512PubMedCrossRefGoogle Scholar
  3. 3.
    Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288PubMedCrossRefGoogle Scholar
  4. 4.
    Chaudhary N, McMahon C, Blobel G (1991) Primary structure of a human arginine-rich nuclear protein that colocalizes with spliceosome components. Proc Natl Acad Sci USA 88:8189–8193PubMedCrossRefGoogle Scholar
  5. 5.
    Coppola M, Pizzigoni A, Banfi S, Bassi MT, Casari G, Incerti B (2000) Identification and characterization of YME1L1, a novel paraplegin-related gene. Genomics 66:48–54PubMedCrossRefGoogle Scholar
  6. 6.
    Corydon TJ, Wilsbech M, Jespersgaard C, Andresen BS, Borglum AD, Pedersen S, Bolund L, Gregersen N, Bross P (2000) Human and mouse mitochondrial orthologs of bacterial ClpX. Mamm Genome 11:899–905PubMedCrossRefGoogle Scholar
  7. 7.
    Di Cesare S, Poccia F, Mastino A, Colizzi V (1992) Surface expressed heat-shock proteins by stressed or human immunodeficiency virus (HIV)-infected lymphoid cells represent the target for antibody-dependent cellular cytotoxicity. Immunology 76:341–343PubMedGoogle Scholar
  8. 8.
    Edelson RL (1980) Cutaneous T cell lymphoma: mycosis fungoides, Sezary syndrome, and other variants. J Am Acad Dermatol 2:89–106PubMedCrossRefGoogle Scholar
  9. 9.
    Eichmüller S, Usener D, Dummer R, Stein A, Thiel D, Schadendorf D (2001) Serological detection of cutaneous T-cell lymphoma-associated antigens. Proc Natl Acad Sci USA 98:629–634PubMedCrossRefGoogle Scholar
  10. 10.
    Eichmüller S, Usener D, Thiel D, Schadendorf D (2003) Tumor-specific antigens in cutaneous T-cell lymphoma: expression and sero-reactivity. Int J Cancer 104:482–487PubMedCrossRefGoogle Scholar
  11. 11.
    Ellis JA, Jackman MR, Luzio JP (1992) The post-synthetic sorting of endogenous membrane proteins examined by the simultaneous purification of apical and basolateral plasma membrane fractions from Caco-2 cells. Biochem J 283:553–560PubMedGoogle Scholar
  12. 12.
    Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C, Nissen MH, Ropke C, Wasik MA, Odum N (2001) Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia 15:787–793PubMedCrossRefGoogle Scholar
  13. 13.
    Ferrarini M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51:613–619PubMedCrossRefGoogle Scholar
  14. 14.
    Foss F (2004) Mycosis fungoides and the Sezary syndrome. Curr Opin Oncol 16:421–428PubMedCrossRefGoogle Scholar
  15. 15.
    Freist W, Gauss DH (1995) Lysyl-tRNA synthetase. Biol Chem Hoppe Seyler 376:451–472PubMedGoogle Scholar
  16. 16.
    Gosslar U, Jonas P, Luz A, Lifka A, Naor D, Hamann A, Holzmann B (1996) Predominant role of alpha 4-integrins for distinct steps of lymphoma metastasis. Proc Natl Acad Sci USA 93:4821–4826PubMedCrossRefGoogle Scholar
  17. 17.
    Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547PubMedCrossRefGoogle Scholar
  18. 18.
    Hartmann TB, Thiel D, Dummer R, Schadendorf D, Eichmuller S (2004) SEREX identification of new tumour-associated antigens in cutaneous T-cell lymphoma. Br J Dermatol 150:252–258PubMedCrossRefGoogle Scholar
  19. 19.
    Hayashita-Kinoh H, Kinoh H, Okada A, Komori K, Itoh Y, Chiba T, Kajita M, Yana I, Seiki M (2001) Membrane-type 5 matrix metalloproteinase is expressed in differentiated neurons and regulates axonal growth. Cell Growth Differ 12:573–580PubMedGoogle Scholar
  20. 20.
    Heinze H, Arnold HH, Fischer D, Kruppa J (1988) The primary structure of the human ribosomal protein S6 derived from a cloned cDNA. J Biol Chem 263:4139–4144PubMedGoogle Scholar
  21. 21.
    Hemler ME, Elices MJ, Parker C, Takada Y (1990) Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions. Immunol Rev 114:45–65PubMedCrossRefGoogle Scholar
  22. 22.
    Heufelder AE, Wenzel BE, Bahn RS (1992) Cell surface localization of a 72 kilodalton heat shock protein in retroocular fibroblasts from patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab 74:732–736PubMedCrossRefGoogle Scholar
  23. 23.
    Ilangumaran S, Briol A, Hoessli DC (1997) Distinct interactions among GPI-anchored, transmembrane and membrane associated intracellular proteins, and sphingolipids in lymphocyte and endothelial cell plasma membranes. Biochim Biophys Acta 1328:227–236PubMedCrossRefGoogle Scholar
  24. 24.
    Isomura M, Okui K, Fujiwara T, Shin S, Nakamura Y (1996) Isolation and mapping of RAB2L, a human cDNA that encodes a protein homologous to RalGDS. Cytogenet Cell Genet 74:263–265PubMedCrossRefGoogle Scholar
  25. 25.
    Jakoi ER, Kempe K, Gaston SM (1981) Ligatin binds phosphohexose residues on acidic hydrolases. J Supramol Struct Cell Biochem 16:139–153PubMedCrossRefGoogle Scholar
  26. 26.
    Janes PW, Ley SC, Magee AI (1999) Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol 147:447–461PubMedCrossRefGoogle Scholar
  27. 27.
    Kamarashev J, Burg G, Kempf W, Hess Schmid M, Dummer R (1998) Comparative analysis of histological and immunohistological features in mycosis fungoides and Sezary syndrome. J Cutan Pathol 25:407–412PubMedCrossRefGoogle Scholar
  28. 28.
    Kiat LS, Hui KM, Gopalan G (2002) Aurora-A kinase interacting protein (AIP), a novel negative regulator of human Aurora-A kinase. J Biol Chem 277:45558–45565PubMedCrossRefGoogle Scholar
  29. 29.
    Kim NS, Kato T, Abe N, Kato S (1993) Nucleotide sequence of human cDNA encoding eukaryotic initiation factor 4AI. Nucleic Acids Res 21:2012PubMedCrossRefGoogle Scholar
  30. 30.
    Kinoshita M, Kumar S, Mizoguchi A, Ide C, Kinoshita A, Haraguchi T, Hiraoka Y, Noda M (1997) Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev 11:1535–1547PubMedGoogle Scholar
  31. 31.
    Korver W, Roose J, Heinen K, Weghuis DO, de Bruijn D, van Kessel AG, Clevers H (1997) The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics 46:435–442PubMedCrossRefGoogle Scholar
  32. 32.
    Llano E, Pendas AM, Freije JP, Nakano A, Knauper V, Murphy G, Lopez-Otin C (1999) Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase a overexpressed in brain tumors. Cancer Res 59:2570–2576PubMedGoogle Scholar
  33. 33.
    Lynch EM, Moreland RB, Ginis I, Perrine SP, Faller DV (2001) Hypoxia-activated ligand HAL-1/13 is lupus autoantigen Ku80 and mediates lymphoid cell adhesion in vitro. Am J Physiol Cell Physiol 280:C897–911PubMedGoogle Scholar
  34. 34.
    McGeoch DJ (1985) On the predictive recognition of signal peptide sequences. Virus Res 3:271–286PubMedCrossRefGoogle Scholar
  35. 35.
    Meek K, Gupta S, Ramsden DA, Lees-Miller SP (2004) The DNA-dependent protein kinase: the director at the end. Immunol Rev 200:132–141PubMedCrossRefGoogle Scholar
  36. 36.
    Mimori T, Ohosone Y, Hama N, Suwa A, Akizuki M, Homma M, Griffith AJ, Hardin JA (1990) Isolation and characterization of cDNA encoding the 80-kDa subunit protein of the human autoantigen Ku (p70/p80) recognized by autoantibodies from patients with scleroderma-polymyositis overlap syndrome. Proc Natl Acad Sci USA 87:1777–1781PubMedCrossRefGoogle Scholar
  37. 37.
    Muller S, Goletz S, Packer N, Gooley A, Lawson AM, Hanisch FG (1997) Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1. All putative sites within the tandem repeat are glycosylation targets in vivo. J Biol Chem 272:24780–24793PubMedCrossRefGoogle Scholar
  38. 38.
    Nikolova M, Tawab A, Marie-Cardine A, Bagot M, Boumsell L, Bensussan A (2001) Increased expression of a novel early activation surface membrane receptor in cutaneous T cell lymphoma cells. J Invest Dermatol 116:731–738PubMedCrossRefGoogle Scholar
  39. 39.
    Nobrega FG, Araujo PS, Pasetto M, Raw I (1969) Some properties of cytochrome b5 from liver microsomes of man, monkey, pig and chicken. Biochem J 115:849–856PubMedGoogle Scholar
  40. 40.
    Okazaki Y, Ohno H, Takase K, Ochiai T, Saito T (2000) Cell surface expression of calnexin, a molecular chaperone in the endoplasmic reticulum. J Biol Chem 275:35751–35758PubMedCrossRefGoogle Scholar
  41. 41.
    Pei D (1999) Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J Biol Chem 274:8925–8932PubMedCrossRefGoogle Scholar
  42. 42.
    Rabilloud T (2003) Membrane proteins ride shotgun. Nat Biotechnol. 21:508–510PubMedCrossRefGoogle Scholar
  43. 43.
    Romanic AM, Burns-Kurtis CL, Ao Z, Arleth AJ, Ohlstein EH (2001) Upregulated expression of human membrane type-5 matrix metalloproteinase in kidneys from diabetic patients. Am J Physiol Renal Physiol 281:F309–317PubMedGoogle Scholar
  44. 44.
    Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810–11813PubMedCrossRefGoogle Scholar
  45. 45.
    Sharma M, Li X, Wang Y, Zarnegar M, Huang CY, Palvimo JJ, Lim B, Sun Z (2003) hZimp10 is an androgen receptor co-activator and forms a complex with SUMO-1 at replication foci. Embo J 22:6101–6114PubMedCrossRefGoogle Scholar
  46. 46.
    Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182PubMedGoogle Scholar
  47. 47.
    Storz M, Zepter K, Kamarashev J, Dummer R, Burg G, Haffner AC (2001) Coexpression of CD40 and CD40 ligand in cutaneous T-cell lymphoma (mycosis fungoides). Cancer Res 61:452–454PubMedGoogle Scholar
  48. 48.
    Tai YT, Podar K, Kraeft SK, Wang F, Young G, Lin B, Gupta D, Chen LB, Anderson KC (2002) Translocation of Ku86/Ku70 to the multiple myeloma cell membrane: functional implications. Exp Hematol 30:212–220PubMedCrossRefGoogle Scholar
  49. 49.
    Takada Y, Elices MJ, Crouse C, Hemler ME (1989) The primary structure of the alpha 4 subunit of VLA-4: homology to other integrins and a possible cell-cell adhesion function. Embo J 8:1361–1368PubMedGoogle Scholar
  50. 50.
    Thommes P, Fett R, Schray B, Burkhart R, Barnes M, Kennedy C, Brown NC, Knippers R (1992) Properties of the nuclear P1 protein, a mammalian homologue of the yeast Mcm3 replication protein. Nucleic Acids Res 20:1069–1074PubMedCrossRefGoogle Scholar
  51. 51.
    Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396PubMedCrossRefGoogle Scholar
  52. 52.
    Uetsuki T, Naito A, Nagata S, Kaziro Y (1989) Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha. J Biol Chem 264:5791–5798PubMedGoogle Scholar
  53. 53.
    van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305:285–298PubMedCrossRefGoogle Scholar
  54. 54.
    van Doorn R, Dijkman R, Vermeer MH, Out-Luiting JJ, van der Raaij-Helmer EM, Willemze R, Tensen CP (2004) Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sezary syndrome identified by gene expression analysis. Cancer Res 64:5578–5586PubMedCrossRefGoogle Scholar
  55. 55.
    Wada I, Rindress D, Cameron PH, Ou WJ, Doherty JJ, 2nd, Louvard D, Bell AW, Dignard D, Thomas DY, Bergeron JJ (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 266:19599–19610PubMedGoogle Scholar
  56. 56.
    Wadle A, Mischo A, Imig J, Wullner B, Hensel D, Watzig K, Neumann F, Kubuschok B, Schmidt W, Old LJ, Pfreundschuh M, Renner C (2005) Serological identification of breast cancer-related antigens from a Saccharomyces cerevisiae surface display library. Int J Cancer 117:104–113PubMedCrossRefGoogle Scholar
  57. 57.
    Wang C, McCarty IM, Balazs L, Li Y, Steiner MS (2002) Immunohistological detection of BRAF25 in human prostate tumor and cancer specimens. Biochem Biophys Res Commun 295:136–141PubMedCrossRefGoogle Scholar
  58. 58.
    Wechsler J, Bagot M, Nikolova M, Parolini S, Martin-Garcia N, Boumsell L, Moretta A, Bensussan A (2003) Killer cell immunoglobulin-like receptor expression delineates in situ Sezary syndrome lymphocytes. J Pathol 199:77–83PubMedCrossRefGoogle Scholar
  59. 59.
    Whitfield JF, Sikorska M, Youdale T, Brewer L, Richards R, Walker PR (1989) Ribonucleotide reductase–new twists in an old tale. Adv Enzyme Regul 28:113–123PubMedCrossRefGoogle Scholar
  60. 60.
    Wiest DL, Burgess WH, McKean D, Kearse KP, Singer A (1995) The molecular chaperone calnexin is expressed on the surface of immature thymocytes in association with clonotype-independent CD3 complexes. Embo J 14:3425–3433PubMedGoogle Scholar
  61. 61.
    Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, Ralfkiaer E, Chimenti S, Diaz-Perez JL, Duncan LM, Grange F, Harris NL, Kempf W, Kerl H, Kurrer M, Knobler R, Pimpinelli N, Sander C, Santucci M, Sterry W, Vermeer MH, Wechsler J, Whittaker S, Meijer CJ (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105:3768–3785PubMedCrossRefGoogle Scholar
  62. 62.
    Wu B, Hunt C, Morimoto R (1985) Structure and expression of the human gene encoding major heat shock protein HSP70. Mol Cell Biol 5:330–341PubMedGoogle Scholar
  63. 63.
    Yaneva M, Wen J, Ayala A, Cook R (1989) cDNA-derived amino acid sequence of the 86-kDa subunit of the Ku antigen. J Biol Chem 264:13407–13411PubMedGoogle Scholar
  64. 64.
    Yokota S, Yamamoto Y, Shimizu K, Momoi H, Kamikawa T, Yamaoka Y, Yanagi H, Yura T, Kubota H (2001) Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma. Cell Stress Chaperones 6:345–350PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mieun Lee
    • 1
  • Claudia Kistler
    • 1
  • Tanja B. Hartmann
    • 1
  • Fang Li
    • 1
  • Reinhard Dummer
    • 2
  • Edgar Dippel
    • 3
  • Nina Booken
    • 4
  • Claus D. Klemke
    • 4
  • Dirk Schadendorf
    • 1
    • 4
  • Stefan B. Eichmüller
    • 1
    • 4
  1. 1.Skin Cancer Unit (D070)German Cancer Research CenterHeidelbergGermany
  2. 2.Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
  3. 3.Department of DermatologyMedical Centre Lippe-LemgoLemgoGermany
  4. 4.Department of DermatologyMannheim University Clinics, University of HeidelbergMannheimGermany

Personalised recommendations