Cancer Immunology, Immunotherapy

, Volume 56, Issue 5, pp 659–675 | Cite as

T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells

  • Jon Amund KyteEmail author
  • Gunnar Kvalheim
  • Kari Lislerud
  • Per thor Straten
  • Svein Dueland
  • Steinar Aamdal
  • Gustav Gaudernack
Original Article


We have developed an individualized melanoma vaccine based on autologous dendritic cells (DCs) transfected with autologous tumor-mRNA. The vaccine targets the unique spectrum of tumor antigens in each patient and may recruit multiple T cell clones. In a recent phase I/II trial, we demonstrated T cell responses against vaccine antigens in 9/19 patients evaluable by T cell assays. Here, we report a follow-up study that was conducted to characterize interesting T cell responses and to investigate the effects of long-term booster vaccination. Two patients were selected for continued vaccine therapy. The clinical follow-up suggested a favorable clinical development in both patients. The immunological data (T cell proliferation/IFNγ ELISPOT/Bioplex cytokine assays) indicated sustained T cell responses and suggested an enhancing effect of booster vaccinations. Both CD4+ and CD8+ T cell responses were demonstrated. From post-vaccination samples, we generated 39 T cell clones that responded specifically to stimulation by mRNA-transfected DCs and 12 clones that responded to mock-transfected DCs. These data clearly indicate a two-component vaccine response, against transfected and non-transfected antigens. T cell receptor (TCR) clonotype mapping, performed on 11 tDC-specific clones, demonstrated that 10/11 clones had different TCRs. The results thus indicate a broad spectrum T cell response against antigens encoded by the transfected tumor-mRNA. We generally observed mixed Th1/Th2 cytokine profiles, even in T cell clones that were confirmed to be derived from a single cell. This finding suggests that cytokine patterns after cancer vaccination may be more complex than indicated by the classic Th1/Th2 dichotomy.


Dendritic cells RNA transfection Immuno-gene therapy Melanoma T cell responses Cytokine profiles 



Dendritic cell


Peripheral blood mononuclear cell


T cell receptor


Delayed-type hypersensitivity



This work was supported by the Norwegian Ministry of Health (Gene Therapy Grant), the Norwegian Cancer Society and ENACT.


  1. 1.
    Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE, Morris JC (2004) Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest 113:1515–1525PubMedGoogle Scholar
  2. 2.
    Gjertsen MK, Bakka A, Breivik J, Saeterdal I, Solheim BG, Soreide O, Thorsby E, Gaudernack G (1995) Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet 346:1399–1400CrossRefPubMedGoogle Scholar
  3. 3.
    Parmiani G, Castelli C, Rivoltini L, Casati C, Tully GA, Novellino L, Patuzzo A, Tosi D, Anichini A, Santinami M (2003) Immunotherapy of melanoma. Semin Cancer Biol 13:391–400CrossRefPubMedGoogle Scholar
  4. 4.
    Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327CrossRefPubMedGoogle Scholar
  5. 5.
    Speiser DE, Liénard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini JC, Romero P (2005) Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 115:739–746PubMedGoogle Scholar
  6. 6.
    Wang F, Bade E, Kuniyoshi C, Spears L, Jeffery G, Marty V, Groshen S, Weber J (1999) Phase I trial of a MART-1 peptide vaccine with incomplete Freund’s adjuvant for resected high-risk melanoma. Clin Cancer Res 5:2756–2765PubMedGoogle Scholar
  7. 7.
    Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458PubMedGoogle Scholar
  8. 8.
    Mu LJ, Kyte JA, Kvalheim G, Aamdal S, Dueland S, Hauser M, Hammerstad H, Waehre H, Raabe N, Gaudernack G (2005) Immunotherapy with allotumor mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients. Br J Cancer 93:749–756CrossRefPubMedGoogle Scholar
  9. 9.
    Vilella R, Benítez D, Milà J, Lozano M, Vilana R, Pomes J, Tomas X, Costa J, Vilalta A, Malvehy J, Puig S, Mellado B, Martí R, Castel T (2004) Pilot study of treatment of biochemotherapy-refractory stage IV melanoma patients with autologous dendritic cells pulsed with a heterologous melanoma cell line lysate. Cancer Immunol Immunother 53:651–658CrossRefPubMedGoogle Scholar
  10. 10.
    Anichini A, Mortarini R, Maccalli C, Squarcina P, Fleischhauer K, Mascheroni L, Parmiani G (1996) Cytotoxic T cells directed to tumor antigens not expressed on normal melanocytes dominate HLA-A2.1-restricted immune repertoire to melanoma. J Immunol 156:208–217PubMedGoogle Scholar
  11. 11.
    Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60:1028–1034PubMedGoogle Scholar
  12. 12.
    Slingluff CL (1999) Targeting unique tumor antigens and modulating the cytokine environment may improve immunotherapy for tumors with immune escape mechanisms. Cancer Immunol Immunother 48:371–373CrossRefPubMedGoogle Scholar
  13. 13.
    Srivastava PK (1996) Do human cancers express shared protective antigens? or the necessity of remembrance of things past. Semin Immunol 8:295–302CrossRefPubMedGoogle Scholar
  14. 14.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252CrossRefPubMedGoogle Scholar
  15. 15.
    Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Cancer 5:296–306Google Scholar
  16. 16.
    Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15:138–147CrossRefPubMedGoogle Scholar
  17. 17.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332CrossRefPubMedGoogle Scholar
  18. 18.
    Salcedo M, Bercovici N, Taylor R, Vereecken P, Massicard S, Duriau D, Vernel-Pauillac F, Boyer A, Baron-Bodo V, Mallard E, Bartholeyns J, Goxe B, Latour N, Leroy S, Prigent D, Martiat P, Sales F, Laporte M, Bruyns C, Romet-Lemonne JL, Abastado JP, Lehmann F, Velu T (2006) Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol Immunother 55:819–829CrossRefPubMedGoogle Scholar
  19. 19.
    Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Bröcker EB, Grabbe S, Rittgen W, Edler L, Sucker A, Zimpfer-Rechner C, Berger T, Kamarashev J, Burg G, Jonuleit H, Tüttenberg A, Becker JC, Keikavoussi P, Kämpgen E, Schuler G (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17:563–570CrossRefPubMedGoogle Scholar
  20. 20.
    Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P, Bender A, Feuerstein B, Fritsch PO, Romani N, Schuler G (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195:1279–1288CrossRefPubMedGoogle Scholar
  21. 21.
    Kyte JA, Kvalheim G, Aamdal S, Saebøe-Larssen S, Gaudernack G (2005) Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination. Cancer Gene Ther 12:579–591CrossRefPubMedGoogle Scholar
  22. 22.
    Kyte JA, Gaudernack G (2006) Immuno-gene therapy of cancer with tumour-mRNA transfected dendritic cells. Cancer Immunol Immunother 55: 1432–1442CrossRefPubMedGoogle Scholar
  23. 23.
    Caruso DA, Orme LM, Amor GM, Neale AM, Radcliff FJ, Downie P, Tang ML, Ashley DM (2005) Results of a phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer 103:1280–1291CrossRefPubMedGoogle Scholar
  24. 24.
    Kyte JA, Mu LJ, Aamdal S, Kvalheim G, Dueland S, Hauser M, Gullestad HP, Ryder T, Lislerud K, Hammerstad H, Gaudernack G (2006) Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther (Epub ahead of print May 5th) Google Scholar
  25. 25.
    Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633CrossRefPubMedGoogle Scholar
  26. 26.
    Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J, Coleman D, Niedzwiecki D, Gilboa E, Vieweg J (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63:2127–2133PubMedGoogle Scholar
  27. 27.
    Mu LJ, Gaudernack G, Saebøe-Larssen S, Hammerstad H, Tierens A, Kvalheim G (2003) A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines. Scand J Immunol 58:578–586CrossRefPubMedGoogle Scholar
  28. 28.
    Saebøe-Larssen S, Fossberg E, Gaudernack G (2002) mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods 259:191–203CrossRefPubMedGoogle Scholar
  29. 29.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216CrossRefPubMedGoogle Scholar
  30. 30.
    Kollgaard T, Petersen SL, Hadrup SR, Masmas TN, Seremet T, Andersen MH, Madsen HO, Vindelov L, thor Straten P (2005) Evidence for involvement of clonally expanded CD8+ T cells in anticancer immune responses in CLL patients following nonmyeloablative conditioning and hematopoietic cell transplantation. Leukemia 19:2273–2280CrossRefPubMedGoogle Scholar
  31. 31.
    Myers RM, Maniatis T, Lerman LS (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol 155:501–527CrossRefPubMedGoogle Scholar
  32. 32.
    thor Straten P, Barfoed A, Seremet T, Saeterdal I, Zeuthen J, Guldberg P (1998) Detection and characterization of alpha-beta-T-cell clonality by denaturing gradient gel electrophoresis (DGGE). Biotechniques 25:244–250PubMedGoogle Scholar
  33. 33.
    thor Straten P, Guldberg P, Gronbaek K, Hansen MR, Kirkin AF, Seremet T, Zeuthen J, Becker JC (1999) In situ T cell responses against melanoma comprise high numbers of locally expanded T cell clonotypes. J Immunol 163:443–447PubMedGoogle Scholar
  34. 34.
    Brunsvig P, Aamdal S, Gjertsen MK, Kvalheim G, Markowski-Grimsrud CJ, Sve I, Dyrhaug M, Trachsel S, Moeller M, Eriksen JA, Gaudernack G (2006) Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother (Epub ahead of print Feb 21st) Google Scholar
  35. 35.
    Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:852–856CrossRefPubMedGoogle Scholar
  36. 36.
    Shedlock DJ, Shen H (2003) Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300:337–339CrossRefPubMedGoogle Scholar
  37. 37.
    Chapman HA (1998) Endosomal proteolysis and MHC class II function. Curr Opin Immunol 10:93–102CrossRefPubMedGoogle Scholar
  38. 38.
    Pamer E, Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 16:323–358CrossRefPubMedGoogle Scholar
  39. 39.
    Su Z, Vieweg J, Weizer AZ, Dahm P, Yancey D, Turaga V, Higgins J, Boczkowski D, Gilboa E, Dannull J (2002) Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res 62:5041–5048PubMedGoogle Scholar
  40. 40.
    Wu TC, Guarnieri FG, Staveley-O’Carroll KF, Viscidi RP, Levitsky HI, Hedrick L, Cho KR, August JT, Pardoll DM (1995) Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. PNAS 92:11671–11675CrossRefPubMedGoogle Scholar
  41. 41.
    Su Z, Dannull J, Yang BK, Dahm P, Coleman D, Yancey D, Sichi S, Niedzwiecki D, Boczkowski D, Gilboa E, Vieweg J (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 174:3798–3807PubMedGoogle Scholar
  42. 42.
    Müller MR, Grünebach F, Nencioni A, Brossart P (2003) Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol 170:5892–5896PubMedGoogle Scholar
  43. 43.
    Müller MR, Tsakou G, Grünebach F, Schmidt SM, Brossart P (2004) Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood 103:1763–1769CrossRefPubMedGoogle Scholar
  44. 44.
    Chapman HA (2006) Endosomal proteases in antigen presentation. Curr Opin Immunol 18:78–84CrossRefPubMedGoogle Scholar
  45. 45.
    Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. PNAS 102:7922–7927CrossRefPubMedGoogle Scholar
  46. 46.
    Dorfel D, Appel S, Grunebach F, Weck MM, Muller MR, Heine A, Brossart P (2005) Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood 105:3199–3205CrossRefPubMedGoogle Scholar
  47. 47.
    Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, Mautner J (2003) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33:1250–1259CrossRefPubMedGoogle Scholar
  48. 48.
    Schaft N, Dörrie J, Thumann P, Beck VE, Müller I, Schultz ES, Kämpgen E, Dieckmann D, Schuler G (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 174:3087–3097PubMedGoogle Scholar
  49. 49.
    Nussenzweig MC, Steinman RM (1980) Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction. J Exp Med 151:1196–1212CrossRefPubMedGoogle Scholar
  50. 50.
    Scheinecker C, Machold KP, Majdic O, Höcker P, Knapp W, Smolen JS (1998) Initiation of the autologous mixed lymphocyte reaction requires the expression of costimulatory molecules B7-1 and B7-2 on human peripheral blood dendritic cells. J Immunol 161:3966–3973PubMedGoogle Scholar
  51. 51.
    Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E (2005) Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res 65:11156–11163CrossRefPubMedGoogle Scholar
  52. 52.
    Schultz ES, Schuler-Thurner B, Stroobant V, Jenne L, Berger TG, Thielemanns K, van der Bruggen P, Schuler G (2004) Functional analysis of tumor-specific Th cell responses detected in melanoma patients after dendritic cell-based immunotherapy. J Immunol 172:1304–1310PubMedGoogle Scholar
  53. 53.
    Bullens DM, Kasran A, Thielemans K, Bakkus M, Ceuppens JL (2001) CD40L-induced IL-12 production is further enhanced by the Th2 cytokines IL-4 and IL-13. Scand J Immunol 53:455–463CrossRefPubMedGoogle Scholar
  54. 54.
    Chaouat G, Ledée-Bataille N, Dubanchet S, Zourbas S, Sandra O, Martal J (2004) TH1/TH2 paradigm in pregnancy: paradigm lost? Int Arch Allergy Immunol 134:93–119CrossRefPubMedGoogle Scholar
  55. 55.
    Gor DO, Rose NR, Greenspan NS (2003) TH1–TH2: a procrustean paradigm. Nat Immunol 4:503–505CrossRefPubMedGoogle Scholar
  56. 56.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMedGoogle Scholar
  57. 57.
    Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN (2006) Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440:890–895CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jon Amund Kyte
    • 1
    Email author
  • Gunnar Kvalheim
    • 2
  • Kari Lislerud
    • 1
  • Per thor Straten
    • 3
  • Svein Dueland
    • 4
  • Steinar Aamdal
    • 4
  • Gustav Gaudernack
    • 1
  1. 1.Section for Immunotherapy, Department of Immunology, Cancer Research InstituteThe Norwegian Radium Hospital, University of OsloOsloNorway
  2. 2.Laboratory for Cellular TherapyThe Norwegian Radium HospitalOsloNorway
  3. 3.Tumor Immunology Group, Institute of Cancer BiologyDanish Cancer SocietyCopenhagenDenmark
  4. 4.Department of Clinical Cancer ResearchThe Norwegian Radium HospitalOsloNorway

Personalised recommendations