Cancer Immunology, Immunotherapy

, Volume 56, Issue 4, pp 501–514

Correlation of ZAP-70 expression in B cell leukemias to the ex vivo response to a combination of fludarabine/genistein

  • Amal Mansour
  • Victor T. Chang
  • Shanti Srinivas
  • Jonathan Harrison
  • Elizabeth Raveche
Original Article


The role of ZAP-70 expression on the ex vivo response of blood cells from CLL and PLL patients to a combination of fludarabine, a purine analog, and genistein, a tyrosine kinase inhibitor was studied. Patient cells were studied for the expression of ZAP-70 mRNA and its relation to the induction of apoptosis in response to treatment with genistein 15–60 μM and/or fludarabine 3 μM. The combination of genistein and fludarabine resulted in a significantly increased induction of apoptosis relative to the fludarabine alone. The ex vivo patient cells with a high ZAP-70 expression underwent more apoptosis in response to genistein than did patient cells with a low ZAP-70 mRNA expression. In contrast, basal IL-10 mRNA expression correlated negatively with apoptosis induction in response to genistein (P < 0.01). These studies suggest that, in malignant B cells that express elevated levels of the ZAP-70 signaling molecule, genistein may inhibit the ZAP-70 tyrosine kinase activity, resulting in cell death. The ZAP-70 may serve as a target for therapy. In addition, these studies suggest that the IL-10 expression by malignant B cells may not only suppress anti-tumor T cell responses in vivo, but also promote the survival of malignant B cells despite treatment with chemotherapeutic agents.


Genistein Chronic lymphoproliferative leukemia Fludarabine IL-10 Apoptosis ZAP-70 


  1. 1.
    Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy—review of a new approach. Pharmacol Rev 55:241–269PubMedGoogle Scholar
  2. 2.
    Bai M, Papoudou-Bai A, Kitsoulis P, Horianopoulos N, Kamina S, Agnantis NJ, Kanavaros P (2005) Cell cycle and apoptosis deregulation in classical Hodgkin lymphomas. In Vivo 19:439–453PubMedGoogle Scholar
  3. 3.
    Bannerji R, Byrd JC (2000) Update on the biology of chronic lymphocytic leukemia. Curr Opin Oncol 12:22–29PubMedGoogle Scholar
  4. 4.
    Bellosillo B, Villamor N, Colomer D, Pons G, Montserrat E, Gil J (1999) In vitro evaluation of fludarabine in combination with cyclophosphamide and/or mitoxantrone in B-cell chronic lymphocytic leukemia. Blood 94:2836–2843PubMedGoogle Scholar
  5. 5.
    Binet JL, Caligaris-Cappio F, Catovsky D, Cheson B, Davis T, Dighiero G, Dohner H, Hallek M, Hillmen P, Keating M, Montserrat E, Kipps TJ, Rai K (2006) Perspectives on the use of new diagnostic tools in the treatment of chronic lymphocytic leukemia. Blood 107:859–861PubMedGoogle Scholar
  6. 6.
    Bogner C, Sandherr M, Perker M, Weick K, Ringshausen I, Peschel C, Decker T (2006) Cyclin E but not bcl-2, bax or mcl-1 is differentially expressed in ZAP 70-positive and ZAP 70-negative B-CLL cells. Ann Hematol 85:48–462Google Scholar
  7. 7.
    Bosch F, Villamor N (2003) ZAP-70 expression in CLL: a new parameter for an old disease. Haematologica 88:724–726PubMedGoogle Scholar
  8. 8.
    Bruserud O, Tronstad KJ, McCormack E, Gjertsen BT (2006) Is targeted chemotherapy an alternative to immunotherapy in chronic lymphocytic leukemia? Cancer Immunol Immunother 55:221–228PubMedGoogle Scholar
  9. 9.
    Byrd JC, Lin TS, Grever MR (2006) Treatment of relapsed chronic lymphocytic leukemia: old and new therapies. Semin Oncol 33:210–219PubMedGoogle Scholar
  10. 10.
    Byrd JC, Lucas DM, Mone AP, Kitner JB, Drabick JJ, Grever MR (2003) KRN5500: a novel therapeutic agent with in vitro activity against human B-cell chronic lymphocytic leukemia cells mediates cytotoxicity via the intrinsic pathway of apoptosis. Blood 101:4547–4550PubMedGoogle Scholar
  11. 11.
    Byrd JC, Peterson BL, Gabrilove J, Odenike OM, Grever MR, Rai K, Larson RA (2005) Treatment of relapsed chronic lymphocytic leukemia by 72-hour continuous infusion or 1-hour bolus infusion of flavopiridol: results from Cancer and Leukemia Group B study 19805. Clin Cancer Res 11:4176–4181PubMedGoogle Scholar
  12. 12.
    Byrd JC, Rai K, Peterson BL, Appelbaum FR, Morrison VA, Kolitz JE, Shepherd L, Hines JD, Schiffer CA, Larson RA (2005) Addition of rituximab to fludarabine may prolong progression-free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALGB 9712 and CALGB 9011. Blood 105:49–53PubMedGoogle Scholar
  13. 13.
    Byrd JC, Shinn C, Waselenko JK, Fuchs EJ, Lehman TA, Nguyen PL, Flinn IW, Diehl LF, Sausville E, Grever MR (1998) Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p53. Blood 92:3804–3816PubMedGoogle Scholar
  14. 14.
    Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ (1996) Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 56:2973–2978PubMedGoogle Scholar
  15. 15.
    Catherwood MA, Matthews C, Niblock R, Dobbin E, Morris TC, Denis Alexander H (2006) ZAP-70 mRNA quantification in B-cell chronic lymphocytic leukaemia. Eur J Haematol 76:294–298PubMedGoogle Scholar
  16. 16.
    Chen L, Apgar J, Huynh L, Dicker F, Giago-McGahan T, Rassenti L, Weiss A, Kipps TJ (2005) ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 105:2036–2041PubMedGoogle Scholar
  17. 17.
    Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A, Kipps TJ (2002) Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 100:4609–4614PubMedGoogle Scholar
  18. 18.
    Cheng AM, Negishi I, Anderson SJ, Chan AC, Bolen J, Loh DY, Pawson T (1997) The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc Natl Acad Sci USA 94:9797–9801PubMedGoogle Scholar
  19. 19.
    Chiorazzi N, Allen SL, Ferrarini M (2005) Clinical and laboratory parameters that define clinically relevant B-CLL subgroups. Curr Top Microbiol Immunol 294:109–133PubMedGoogle Scholar
  20. 20.
    Colucci F, Schweighoffer E, Tomasello E, Turner M, Ortaldo JR, Vivier E, Tybulewicz VL, Di Santo JP (2002) Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases. Nat Immunol 3:288–294PubMedGoogle Scholar
  21. 21.
    Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, Marce S, Lopez-Guillermo A, Campo E, Montserrat E (2003) ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 348:1764–1775PubMedGoogle Scholar
  22. 22.
    Cutrona G, Colombo M, Matis S, Reverberi D, Dono M, Tarantino V, Chiorazzi N, Ferrarini M (2006) B lymphocytes in humans express ZAP-70 when activated in vivo. Eur J Immunol 36:558–569PubMedGoogle Scholar
  23. 23.
    Czarneski J, Lin YC, Chong S, McCarthy B, Fernandes H, Parker G, Mansour A, Huppi K, Marti GE, Raveche E (2004) Studies in NZB IL-10 knockout mice of the requirement of IL-10 for progression of B-cell lymphoma. Leukemia 18:597–606PubMedGoogle Scholar
  24. 24.
    Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J, Lichtman SM, Schulman P, Vinciguerra VP, Rai KR, Ferrarini M, Chiorazzi N (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–1847PubMedGoogle Scholar
  25. 25.
    Del Principe MI, Del Poeta G, Buccisano F, Maurillo L, Venditti A, Zucchetto A, Marini R, Niscola P, Irno Consalvo MA, Mazzone C, Ottaviani L, Panetta P, Bruno A, Bomben R, Suppo G, Degan M, Gattei V, de Fabritiis P, Cantonetti M, Lo Coco F, Del Principe D, Amadori S (2006) Clinical significance of ZAP-70 protein expression in B-cell chronic lymphocytic leukemia. Blood 108:853–861PubMedGoogle Scholar
  26. 26.
    Dighiero G (2002) Chronic lymphoid leukemia: a single disease or 2 distinct diseases? discussion 1266–1268. Bull Acad Natl Med 186:1251–1266PubMedGoogle Scholar
  27. 27.
    Dighiero G (2005) CLL biology and prognosis. Hematology Am Soc Hematol Educ Program 278–284Google Scholar
  28. 28.
    Dijsselbloem N, Vanden Berghe W, De Naeyer A, Haegeman G (2004) Soy isoflavone phyto-pharmaceuticals in interleukin-6 affections. Multi-purpose nutraceuticals at the crossroad of hormone replacement, anti-cancer and anti-inflammatory therapy. Biochem Pharmacol 68:1171–1185PubMedGoogle Scholar
  29. 29.
    Ding H, Duan W, Zhu WG, Ju R, Srinivasan K, Otterson GA, Villalona-Calero MA (2003) P21 response to DNA damage induced by genistein and etoposide in human lung cancer cells. Biochem Biophys Res Commun 305:950–956PubMedGoogle Scholar
  30. 30.
    Durig J, Nuckel H, Cremer M, Fuhrer A, Halfmeyer K, Fandrey J, Moroy T, Klein-Hitpass L, Duhrsen U (2003) ZAP-70 expression is a prognostic factor in chronic lymphocytic leukemia. Leukemia 17:2426–2434PubMedGoogle Scholar
  31. 31.
    Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, Schulman P, Vinciguerra VP, Rai K, Rassenti LZ, Kipps TJ, Dighiero G, Schroeder HW Jr, Ferrarini M, Chiorazzi N (1998) Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102:1515–1525PubMedGoogle Scholar
  32. 32.
    Falleni M, Pellegrini C, Marchetti A, Roncalli M, Nosotti M, Palleschi A, Santambrogio L, Coggi G, Bosari S (2005) Quantitative evaluation of the apoptosis regulating genes Survivin, Bcl-2 and Bax in inflammatory and malignant pleural lesions. Lung Cancer 48:211–216PubMedGoogle Scholar
  33. 33.
    Fayad L, Keating MJ, Reuben JM, O’Brien S, Lee BN, Lerner S, Kurzrock R (2001) Interleukin-6 and interleukin-10 levels in chronic lymphocytic leukemia: correlation with phenotypic characteristics and outcome. Blood 97:256–263PubMedGoogle Scholar
  34. 34.
    Fernandes H, Barchuk W, Ramachandra S, Chou C, Fernandes G, Raveche E (1995) Regulation of CLL by IL-10: role of antisense IL-10. Oncol Rep 2:985–989Google Scholar
  35. 35.
    Ferrajoli A, O’Brien SM (2004) Treatment of chronic lymphocytic leukemia. Semin Oncol 31:60–65PubMedGoogle Scholar
  36. 36.
    Ferrer A, Ollila J, Tobin G, Nagy B, Thunberg U, Aalto Y, Vihinen M, Vilpo J, Rosenquist R, Knuutila S (2004) Different gene expression in immunoglobulin-mutated and immunoglobulin-unmutated forms of chronic lymphocytic leukemia. Cancer Genet Cytogenet 153:69–72PubMedGoogle Scholar
  37. 37.
    Flinn IW, Byrd JC, Bartlett N, Kipps T, Gribben J, Thomas D, Larson RA, Rai K, Petric R, Ramon-Suerez J, Gabrilove J, Grever MR (2005) Flavopiridol administered as a 24-hour continuous infusion in chronic lymphocytic leukemia lacks clinical activity. Leuk Res 29:1253–1257PubMedGoogle Scholar
  38. 38.
    Gary-Gouy H, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul AH (2002) Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood 100:4537–4543PubMedGoogle Scholar
  39. 39.
    Gladue RP, Allen M, Cunningham A, Gardner J, Laquerre AM, Connelly PA, Shaw AS, McNeish J (1997) Phenotypic characterization and analysis of allogeneic T cell responses in ZAP-70 dominant negative transgenic mice. Clin Exp Immunol 110:397–402PubMedGoogle Scholar
  40. 40.
    Grabowski P, Griss S, Arnold CN, Horsch D, Goke R, Arnold R, Heine B, Stein H, Zeitz M, Scherubl H (2005) Nuclear survivin is a powerful novel prognostic marker in gastroenteropancreatic neuroendocrine tumor disease. Neuroendocrinology 81:1–9PubMedGoogle Scholar
  41. 41.
    Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, Montagna L, Piccoli P, Chilosi M, Caligaris-Cappio F (2001) Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 97:2777–2783PubMedGoogle Scholar
  42. 42.
    Guipaud O, Deriano L, Salin H, Vallat L, Sabatier L, Merle-Beral H, Delic J (2003) B-cell chronic lymphocytic leukaemia: a polymorphic family unified by genomic features. Lancet Oncol 4:505–514PubMedGoogle Scholar
  43. 43.
    Hallek M (2005) Chronic Lymphocytic Leukemia (CLL): First-line treatment. Hematology Am Soc Hematol Educ Program 285–291Google Scholar
  44. 44.
    Hamblin T (2002) Chronic lymphocytic leukaemia: one disease or two? Ann Hematol 81:299–303PubMedGoogle Scholar
  45. 45.
    Hamblin T (2006) Is chronic lymphocytic leukemia a response to infectious agents? Leuk ResGoogle Scholar
  46. 46.
    Hamblin TJ (2004) Predicting progression–ZAP-70 in CLL. N Engl J Med 351:856–857PubMedGoogle Scholar
  47. 47.
    Herve M, Xu K, Ng YS, Wardemann H, Albesiano E, Messmer BT, Chiorazzi N, Meffre E (2005) Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 115:1636–1643PubMedGoogle Scholar
  48. 48.
    Kay NE (2006) Purine analogue-based chemotherapy regimens for patients with previously untreated B-chronic lymphocytic leukemia. Semin Hematol 43:S50–S54PubMedGoogle Scholar
  49. 49.
    Keating MJ, O’Brien S, Albitar M, Lerner S, Plunkett W, Giles F, Andreeff M, Cortes J, Faderl S, Thomas D, Koller C, Wierda W, Detry MA, Lynn A, Kantarjian H (2005) Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 23:4079–4088PubMedGoogle Scholar
  50. 50.
    Keating MJ, Rai KR, Wierda WG (2005) Evolution of treatment strategies in chronic lymphocytic leukemia. Part 2 of a 3-part series: advances in the treatment of hematologic malignancies. Clin Adv Hematol Oncol 3:1–10; quiz 11–12Google Scholar
  51. 51.
    Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T (2002) Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Cancer Chemother Pharmacol 50:343–352PubMedGoogle Scholar
  52. 52.
    Kim SZ, Chow KU, Kukoc-Zivojnov N, Boehrer S, Brieger A, Steimle-Grauer SA, Harder L, Hoelzer D, Mitrou PS, Weidmann E (2004) Expression of ZAP-70 protein correlates with disease stage in chronic lymphocytic leukemia and is associated with, but not generally restricted to, non-mutated Ig VH status. Leuk Lymphoma 45:2037–2045PubMedGoogle Scholar
  53. 53.
    Kitada S, Zapata JM, Andreeff M, Reed JC (2000) Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood 96:393–397PubMedGoogle Scholar
  54. 54.
    Kolb JP, Kern C, Quiney C, Roman V, Billard C (2003) Re-establishment of a normal apoptotic process as a therapeutic approach in B-CLL. Curr Drug Targets Cardiovasc Haematol Disord 3:261–286PubMedGoogle Scholar
  55. 55.
    Konig A, Menzel T, Lynen S, Wrazel L, Rosen A, Al-Katib A, Raveche E, Gabrilove JL (1997) Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis. Leukemia 11:258–265PubMedGoogle Scholar
  56. 56.
    Konig A, Schwartz GK, Mohammad RM, Al-Katib A, Gabrilove JL (1997) The novel cyclin-dependent kinase inhibitor flavopiridol downregulates Bcl-2 and induces growth arrest and apoptosis in chronic B-cell leukemia lines. Blood 90:4307–4312PubMedGoogle Scholar
  57. 57.
    Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P, Dohner H, Stilgenbauer S (2002) V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 100:1410–1416PubMedGoogle Scholar
  58. 58.
    Lambert JD, Hong J, Yang GY, Liao J, Yang CS (2005) Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81:284S-291SPubMedGoogle Scholar
  59. 59.
    Legradi A, Chitu V, Szukacsov V, Fajka-Boja R, Szekely Szucs K, Monostori E (2004) Lysophosphatidylcholine is a regulator of tyrosine kinase activity and intracellular Ca(2+) level in Jurkat T cell line. Immunol Lett 91:17–21PubMedGoogle Scholar
  60. 60.
    Mackus WJ, Kater AP, Grummels A, Evers LM, Hooijbrink B, Kramer MH, Castro JE, Kipps TJ, van Lier RA, van Oers MH, Eldering E (2005) Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation. Leukemia 19:427–434PubMedGoogle Scholar
  61. 61.
    Maloum K, Davi F, Merle-Beral H, Pritsch O, Magnac C, Vuillier F, Dighiero G, Troussard X, Mauro FF, Benichou J (2000) Expression of unmutated VH genes is a detrimental prognostic factor in chronic lymphocytic leukemia. Blood 96:377–379PubMedGoogle Scholar
  62. 62.
    Mansour A, McCarthy B, Schwander SK, Chang V, Kotenko S, Donepudi S, Lee J, Raveche E (2004) Genistein induces G2 arrest in malignant B cells by decreasing IL-10 secretion. Cell Cycle 3:1597–1605PubMedGoogle Scholar
  63. 63.
    Matrai Z (2005) CD38 as a prognostic marker in CLL. Hematology 10:39–46PubMedGoogle Scholar
  64. 64.
    Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, Murphy EJ, Koduru P, Ferrarini M, Zupo S, Cutrona G, Damle RN, Wasil T, Rai KR, Hellerstein MK, Chiorazzi N (2005) In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115:755–764PubMedGoogle Scholar
  65. 65.
    Montserrat E (2005) Treatment of chronic lymphocytic leukemia: achieving minimal residual disease-negative status as a goal. J Clin Oncol 23:2884–2885PubMedGoogle Scholar
  66. 66.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedGoogle Scholar
  67. 67.
    Nakagawa Y, Yamaguchi S, Hasegawa M, Nemoto T, Inoue M, Suzuki K, Hirokawa K, Kitagawa M (2004) Differential expression of surviving in bone marrow cells from patients with acute lymphocytic leukemia and chronic lymphocytic leukemia. Leuk Res 28:487–494PubMedGoogle Scholar
  68. 68.
    Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279PubMedGoogle Scholar
  69. 69.
    Oppezzo P, Dighiero G (2005) What do somatic hypermutation and class switch recombination teach us about chronic lymphocytic leukaemia pathogenesis? Curr Top Microbiol Immunol 294:71–89PubMedCrossRefGoogle Scholar
  70. 70.
    Oppezzo P, Dumas G, Lalanne AI, Payelle-Brogard B, Magnac C, Pritsch O, Dighiero G, Vuillier F (2005) Different isoforms of BSAP regulate expression of AID in normal and chronic lymphocytic leukemia B cells. Blood 105:2495–2503PubMedGoogle Scholar
  71. 71.
    Oppezzo P, Magnac C, Bianchi S, Vuillier F, Tiscornia A, Dumas G, Payelle-Brogard B, Ajchenbaum-Cymbalista F, Dighiero G, Pritsch O (2002) Do CLL B cells correspond to naive or memory B-lymphocytes? Evidence for an active Ig switch unrelated to phenotype expression and Ig mutational pattern in B-CLL cells. Leukemia 16:2438–2446PubMedGoogle Scholar
  72. 72.
    Orchard J, Ibbotson R, Best G, Parker A, Oscier D (2005) ZAP-70 in B cell malignancies. Leuk Lymphoma 46:1689–1698PubMedGoogle Scholar
  73. 73.
    Orchard JA, Ibbotson RE, Davis Z, Wiestner A, Rosenwald A, Thomas PW, Hamblin TJ, Staudt LM, Oscier DG (2004) ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 363:105–111PubMedGoogle Scholar
  74. 74.
    Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE, Corcoran MM, Chapman RM, Thomas PW, Copplestone JA, Orchard JA, Hamblin TJ (2002) Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 100:1177–1184PubMedGoogle Scholar
  75. 75.
    Packham G, Stevenson FK (2005) Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology 114:441–449PubMedGoogle Scholar
  76. 76.
    Peng B, Mehta NH, Fernandes H, Chou CC, Raveche E (1995) Growth inhibition of malignant CD5+B (B-1) cells by antisense IL-10 oligonucleotide. Leuk Res 19:159–167PubMedGoogle Scholar
  77. 77.
    Peng B, Sherr DH, Mahboudi F, Hardin J, Wu YH, Sharer L, Raveche ES (1994) A cultured malignant B-1 line serves as a model for Richter’s syndrome. J Immunol 153:1869–1880PubMedGoogle Scholar
  78. 78.
    Ramachandra S, Metcalf RA, Fredrickson T, Marti GE, Raveche E (1996) Requirement for increased IL-10 in the development of B-1 lymphoproliferative disease in a murine model of CLL. J Clin Invest 98:1788–1793PubMedGoogle Scholar
  79. 79.
    Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC, Kay NE, Greaves A, Weiss A, Kipps TJ (2004) ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 351:893–901PubMedGoogle Scholar
  80. 80.
    Ravindranath MH, Muthugounder S, Presser N, Viswanathan S (2004) Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp Med Biol 546:121–165PubMedGoogle Scholar
  81. 81.
    Richard N, Porath D, Radspieler A, Schwager J (2005) Effects of resveratrol, piceatannol, tri-acetoxystilbene, and genistein on the inflammatory response of human peripheral blood leukocytes. Mol Nutr Food Res 49:431–442PubMedGoogle Scholar
  82. 82.
    Richardson SJ, Matthews C, Catherwood MA, Alexander HD, Carey BS, Farrugia J, Gardiner A, Mould S, Oscier D, Copplestone JA, Prentice AG (2005) ZAP-70 expression is associated with enhanced ability to respond to migratory and survival signals in B cell chronic lymphocytic leukaemia (B-CLL). Blood 107:3584–3592PubMedGoogle Scholar
  83. 83.
    Ringshausen I, Oelsner M, Weick K, Bogner C, Peschel C, Decker T (2006) Mechanisms of apoptosis-induction by rottlerin: therapeutic implications for B-CLL. Leukemia 20:514–520PubMedGoogle Scholar
  84. 84.
    Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, Yang L, Pickeral OK, Rassenti LZ, Powell J, Botstein D, Byrd JC, Grever MR, Cheson BD, Chiorazzi N, Wilson WH, Kipps TJ, Brown PO, Staudt LM (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194:1639–1647PubMedGoogle Scholar
  85. 85.
    Rosenwald A, Staudt LM (2002) Clinical translation of gene expression profiling in lymphomas and leukemias. Semin Oncol 29:258–263PubMedGoogle Scholar
  86. 86.
    Sanz L, Garcia-Marco JA, Casanova B, de La Fuente MT, Garcia-Gila M, Garcia-Pardo A, Silva A (2004) Bcl-2 family gene modulation during spontaneous apoptosis of B-chronic lymphocytic leukemia cells. Biochem Biophys Res Commun 315:562–567PubMedGoogle Scholar
  87. 87.
    Saxena A, Viswanathan S, Moshynska O, Tandon P, Sankaran K, Sheridan DP (2004) Mcl-1 and Bcl-2/Bax ratio are associated with treatment response but not with Rai stage in B-cell chronic lymphocytic leukemia. Am J Hematol 75:22–33PubMedGoogle Scholar
  88. 88.
    Schimmer AD, Munk-Pedersen I, Minden MD, Reed JC (2003) Bcl-2 and apoptosis in chronic lymphocytic leukemia. Curr Treat Options Oncol 4:211–218PubMedGoogle Scholar
  89. 89.
    Schriever F, Huhn D (2003) New directions in the diagnosis and treatment of chronic lymphocytic leukaemia. Drugs 63:953–969PubMedGoogle Scholar
  90. 90.
    Schroers R, Griesinger F, Trumper L, Haase D, Kulle B, Klein-Hitpass L, Sellmann L, Duhrsen U, Durig J (2005) Combined analysis of ZAP-70 and CD38 expression as a predictor of disease progression in B-cell chronic lymphocytic leukemia. Leukemia 19:750–758PubMedGoogle Scholar
  91. 91.
    Schroers R, Pukrop T, Durig J, Haase D, Duhrsen U, Trumper L, Griesinger F (2004) B-cell chronic lymphocytic leukemia with aberrant CD8 expression: genetic and immunophenotypic analysis of prognostic factors. Leuk Lymphoma 45:1677–1681PubMedGoogle Scholar
  92. 92.
    Stevenson FK, Caligaris-Cappio F (2004) Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 103:4389–4395PubMedGoogle Scholar
  93. 93.
    Sugawara T, Di Bartolo V, Miyazaki T, Nakauchi H, Acuto O, Takahama Y (1998) An improved retroviral gene transfer technique demonstrates inhibition of CD4–CD8-thymocyte development by kinase-inactive ZAP-70. J Immunol 161:2888–2894PubMedGoogle Scholar
  94. 94.
    Tomic J, White D, Shi Y, Mena J, Hammond C, He L, Miller RL, Spaner DE (2006) Sensitization of IL-2 signaling through TLR-7 enhances B lymphoma cell immunogenicity. J Immunol 176:3830–3839PubMedGoogle Scholar
  95. 95.
    Tsimberidou AM, Keating MJ, Giles FJ, Wierda WG, Ferrajoli A, Lerner S, Beran M, Andreeff M, Kantarjian HM, O’Brien S (2004) Fludarabine and mitoxantrone for patients with chronic lymphocytic leukemia. Cancer 100:2583–2591PubMedGoogle Scholar
  96. 96.
    Uckun FM, Messinger Y, Chen CL, O’Neill K, Myers DE, Goldman F, Hurvitz C, Casper JT, Levine A (1999) Treatment of therapy-refractory B-lineage acute lymphoblastic leukemia with an apoptosis-inducing CD19-directed tyrosine kinase inhibitor. Clin Cancer Res 5:3906–3913PubMedGoogle Scholar
  97. 97.
    Upadhyay S, Neburi M, Chinni SR, Alhasan S, Miller F, Sarkar FH (2001) Differential sensitivity of normal and malignant breast epithelial cells to genistein is partly mediated by p21(WAF1). Clin Cancer Res 7:1782–1789PubMedGoogle Scholar
  98. 98.
    Vasconcelos Y, Davi F, Levy V, Oppezzo P, Magnac C, Michel A, Yamamoto M, Pritsch O, Merle-Beral H, Maloum K, Ajchenbaum-Cymbalista F, Dighiero G (2003) Binet’s staging system and VH genes are independent but complementary prognostic indicators in chronic lymphocytic leukemia. J Clin Oncol 21:3928–3932PubMedGoogle Scholar
  99. 99.
    Vener C, Gianelli U, Cortelezzi A, Fracchiolla NS, Somalvico F, Savi F, Pasquini MC, Bosari S, Deliliers GL (2006) ZAP-70 immunoreactivity is a prognostic marker of disease progression in chronic lymphocytic leukemia. Leuk Lymphoma 47:245–251PubMedGoogle Scholar
  100. 100.
    Wang HK (2000) The therapeutic potential of flavonoids. Expert Opin Investig Drugs 9:2103–2119PubMedGoogle Scholar
  101. 101.
    Wendtner CM, Eichhorst BF, Hallek MJ (2004) Advances in chemotherapy for chronic lymphocytic leukemia. Semin Hematol 41:224–233PubMedGoogle Scholar
  102. 102.
    Wierda WG, Kipps TJ, Keating MJ (2005) Novel immune-based treatment strategies for chronic lymphocytic leukemia. J Clin Oncol 23:6325–6332PubMedGoogle Scholar
  103. 103.
    Wierda WG, O’Brien SM (2006) Initial therapy for patients with chronic lymphocytic leukemia. Semin Oncol 33:202–209PubMedGoogle Scholar
  104. 104.
    Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE, Zhao H, Ibbotson RE, Orchard JA, Davis Z, Stetler-Stevenson M, Raffeld M, Arthur DC, Marti GE, Wilson WH, Hamblin TJ, Oscier DG, Staudt LM (2003) ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101:4944–4951PubMedGoogle Scholar
  105. 105.
    Zenz T, Roessner A, Thomas A, Frohling S, Dohner H, Calabretta B, Daheron L (2004) hIan5: the human ortholog to the rat Ian4/Iddm1/lyp is a new member of the Ian family that is overexpressed in B-cell lymphoid malignancies. Genes Immun 5:109–116PubMedGoogle Scholar
  106. 106.
    Zhong L, Wu CH, Lee WH, Liu CP (2004) Zeta-associated protein of 70 kDa (ZAP-70), but not Syk, tyrosine kinase can mediate apoptosis of T cells through the Fas/Fas ligand, caspase-8 and caspase-3 pathways. J Immunol 172:1472–1482PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Amal Mansour
    • 1
  • Victor T. Chang
    • 1
    • 2
    • 3
  • Shanti Srinivas
    • 1
    • 2
    • 3
  • Jonathan Harrison
    • 1
  • Elizabeth Raveche
    • 1
    • 4
  1. 1.Department of Pathology, New Jersey Medical SchoolUMDNJNewarkUSA
  2. 2.Section of Hematology/Oncology VA New Jersey Health Care SystemEast OrangeUSA
  3. 3.Department of Medicine, New Jersey Medical SchoolUMDNJNewarkUSA
  4. 4.Department of Pathology and Laboratory Medicine, New Jersey Medical School, UMDNJNewarkUSA

Personalised recommendations