Cancer Immunology, Immunotherapy

, Volume 55, Issue 11, pp 1426–1431

Immune enhancement and anti-tumour activity of IL-23

Symposium Paper

Abstract

Immunotherapy, including the use of cytokines and/or modified tumour cells immune stimulatory cytokines, can enhance the host anti-tumour immune responses. Interleukin-23 (IL-23) is a relative novel cytokine, which consists of a heterodimer of the IL-12p40 subunit and a novel p19 subunit. IL-23 has biological activities similar to but distinct from IL-12. IL-23 can enhance the proliferation of memory T cells and the production of IFN-γ, IL-12 and TNF-α from activated T cells. IL-23 activates macrophages to produce TNF-α and nitric oxide. IL-23 can also act directly on dendritic cells and possesses potent anti-tumour and anti-metastatic activity in murine models of cancer. IL-23 can also induce a lower level of IFN-γ production compared with that induced by IL-12. This may make IL-23 an alternative and safer therapeutic agent for cancer, as IL-12 administration can lead to severe toxic side effects because of the extremely high levels of IFN-γ it induces.

Keywords

IL-23 Immune response Antitumour activity 

References

  1. 1.
    Lotze MT, Chang AE, Seipp CA, Simpson C, Vetto JT, Rosenberg SA (1986) High-dose recombinant interleukin-2 in the treatment of patients with disseminated cancer response, treatment-related morbidity and histological finding. JAMA 256:3117–3124PubMedCrossRefGoogle Scholar
  2. 2.
    Pizza G, Viaz D, Devince C, Vichi-Pascuuchi JM, Busutti L, Bergami T (1988) Intralymphatic administration of interleukin-2 (IL-2) in cancer patients: a pilot study. Cancer Res 7:46–48Google Scholar
  3. 3.
    Sama G, Collins J, Figlin R, Robertson P, Altrock B, Abels R (1990) A pilot study of intralymphatic interleukin-2 II clinical and biological effects. J Biol Response Modif 9:81–86Google Scholar
  4. 4.
    Zinzani PL, Lauria F, Salvucci M, Rondelli D, Raspadori D, Bendandi M, Magagnoli M, Tura S (1997) Hairy-cell leukemia and alpha-interferon treatment: long-term responders. Hematoligica 88:152–155Google Scholar
  5. 5.
    Ozer H, Wiernik PH, Giles F, Tendler C (1998) Recombinant interferon-alpha therapy in patients with follicular lymphoma. Cancer 82:1821–1830PubMedCrossRefGoogle Scholar
  6. 6.
    Motzer RJ, Rakhit A, Schqartz LH, Olencki T, Malone TM, Sandstrom K, Nadeau R, Parmar H, Bukowski R (1998) Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin Cancer Res 4:1183–1191PubMedGoogle Scholar
  7. 7.
    Robertson MJ, Cameron C, Atkins MM, Gordon MS, Lotze MT, Sherman ML, Ritz J (1999) Immunological effects of interleukin 12 administered by bolus intravenous injection to patients with cancer. Clin Cancer Res 5:9–16PubMedGoogle Scholar
  8. 8.
    Gansbacher B, Zier K, Daniels B, Cronin K, Bannedi R, Gilboa E (1990) Interleukin-2 gene transfer into tumour cells abrogates tumourigenicity and induce protective immunity, J Exp Med 172:1217–1223PubMedCrossRefGoogle Scholar
  9. 9.
    Karp SE, Farber A, Salo JC, Hwu P, Jaffe G, Asher AL, Shiloni E, Restifo N, Mule JJ, Rosenberg SA (1993) Cytokine secretion by genetically modified non-immunogenic murine fibrosarcoma. Tumour inhibition by IL-2 but not tumour necrosis factor. J Immunol 150:896–908PubMedGoogle Scholar
  10. 10.
    Matsubara H, Koide Y, Sugaya M, Gunji Y, Asano T, Ochiai T, Takeganak, Sakiyama S, Tagawa M (1998) Antitumour responses of genetically engineered IL-2 expression to human esophageal carcinoma cells in mature T cell-defective condition. Int J Cancer 53:471–477Google Scholar
  11. 11.
    Golumbek PT, Lazenby A, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM (1991) Treatment of established renal cancer by tumour cells engineered to secrete interleukin-4. Science 254:713–716PubMedCrossRefGoogle Scholar
  12. 12.
    Sturlan S, Beinhauer BG, Oberhuber G, Huang L, Aasen AO, Roay MA (2002) In vivo gene transfer of murine interleukin-4 inhibits colon26-mediated cancer cachexia in mice. Anticancer Res 22:2547–2554PubMedGoogle Scholar
  13. 13.
    Porgador A, Tzehoval E, Katz A, Vadai E, Revel M, Feldman M, Eisenbach L (1992) Interleukin 6 gene transfection into Lewis lung carcinoma tumour cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res 52:3679–3686PubMedGoogle Scholar
  14. 14.
    Cao X, Wang Q, Ju DW, Tao Q, Wang J (1999) Efficient induction of local and systemic antitumour immune response by liposome-mediated intratumoural co-transfer of interleukin-2 gene and interleukin-6 gene. J Exp Clin Cancer Res 18:191–200PubMedGoogle Scholar
  15. 15.
    Chen L, Chen D, Block E, O’Donnell M, Kufe DW, Clinton SK (1997) Eradication of murine bladder carcinoma by intratumour injection of a bicistronic adenoviral vector carrying cDNAs for the IL-12 heterodimer and its inhibition by the IL-12 p40 subunit homodimer. J Immunol 159:351–359PubMedGoogle Scholar
  16. 16.
    Satoh Y, Esche C, Gambotto A, Shurin GV, Yurkovetsky ZR, Robbins PD, Watkins SC, Todo S, Herberman RB, Lotze MT, Shurin MR (2002) Local administration of IL-12-transfected dendritic cells induces antitumour immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol 2:337–349PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang R, DeGroot LJ (2003) Gene therapy of a rat follicular thyroid carcinoma model with adenoviral vectors transducing murine interleukin-12. Endocrinology 144:1393–1398PubMedCrossRefGoogle Scholar
  18. 18.
    Tasaki K, Yoshida Y, Miyauchi M, Maeda T, Tagenaga K, Kouzu T, Asano T, Ochiai T, Sakiyamna S, Tagawa M (2000) Transduction of murine colon carcinoma cells with interleukin-15 gene induces antitumour effects in immunocompetent and immunocompromised hosts. Cancer Gene Ther 7:255–261PubMedCrossRefGoogle Scholar
  19. 19.
    Yoshida Y, Tasaki K, Miyauchi M, Narita M, Takenaga K, Yamamoto H, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M (2000) Impaired tumourigenicity of human pancreatic cancer cells retrovirally transduced with interleukin-12 or interleukin-15 gene. Cancer Gene Ther 7:324–331PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshimura K, Haxama S, Iixuka N, Yoshino S, Yamamoto K, Muraguchi M, Ohmoto Y, Noma T, Oka M (2001) Successful immunogene therapy using colon cancer cells (colon26) transfected with plasmid vector containing mature interleukin-18 cDNA and the Igkappa leader sequence. Cancer Gene Ther 8:9–6PubMedCrossRefGoogle Scholar
  21. 21.
    Nagai H, Hara I, Horikawa T, Oka M, Kamidono S, Ichihashi M (2002) Gene transfer of secreted-type modified interleukin-18 gene to B16F10 melanoma cells suppresses in vivo tumour growth through inhibition of tumour vessel formation. J Invest Dermatol 119:541–548PubMedCrossRefGoogle Scholar
  22. 22.
    Ugai S, Shimozato O, Kawamura K, Wang YQ, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M (2003) Expression of the interleukin-21 gene in murine colon carcinoma cells generates systemic immunity in the inoculated hosts. Cancer Gene Ther 10:187–192PubMedCrossRefGoogle Scholar
  23. 23.
    Vanhaesebroeck B, Mareel M, Van Roy F, Grooten J, Fiers W (1991) Expression of the tumour necrosis factor gene in tumour cells correlates with reduced tumourigenicity and reduced invasiveness in vivo. Cancer Res 51:2229–2238PubMedGoogle Scholar
  24. 24.
    Lasek W, Maxhiewicz A, Czajka A, Switaj T, Golb J, Wiznerowicz M, Korczak-Kawalska G, Bakowiec-Iskra EZ, Gryska K, Ixycki D, Jakobisiak M (2000) Antirumor effects of the combination therapy with TNF-alpha gene-modified tumour cells and interleukin 12 in a melanoma model in mice. Cancer Gene Ther 7:1581–1590PubMedCrossRefGoogle Scholar
  25. 25.
    Ohashi M, Yoshida K, Kushida M, Miura Y, Ohnami S, Ikaraki Y, Kitade Y, Yoshida T, Aoki K (2005) Adenovirus-mediated interferon alpha gene transfer induces regional direct cytotoxicity and possible systemic immunity against pancreatic cancer. Br J Cancer 93:441–449PubMedCrossRefGoogle Scholar
  26. 26.
    Wilderman MJ, Sun J, Jassar AS, Kapoor V, Khan M, Vachani A, Suzuki E, Kinniry PA, Sterman DH, Ksiser LR, Albelda SM (2005) Intrapulmonary IFN-beta gene therapy using an adenoviral vector is highly effective in a murine orthotopic model of bronchogenic adenocarcinoma of the lung. Cancer Res 65:8379–8387PubMedCrossRefGoogle Scholar
  27. 27.
    Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E (1990) Retroviral vector-mediated gamma-interferon gene transfer into tumour cells genetates potent and long lasting antitumor immunity. Cancer Res 50:713–716Google Scholar
  28. 28.
    Dummer R, Hassel JC, Fellenberg F, Eichmuller S, Maier T, Slos P, Acres B, Bleuzen P, Bataille V, Squiban P, Burg G, Urosevic M (2004) Adenovirus-mediated intralesional interferon-gamma gene transfer induces tumour regression in cutaneous lymphomas. Blood 104:1631–1638PubMedCrossRefGoogle Scholar
  29. 29.
    Ju DW, Cao X, Acres B (1997) Intratumour injection of GM-CSF gene encoded recombinant vaccinia virus elicits antitumour response in a mixture melanoma model. Cancer Gene Ther 4:139–144PubMedGoogle Scholar
  30. 30.
    Hogge GS, Burkholder JK, Culp J, Albertini MR, Dubielzig RR, Yang NS, MacEwen EG (1999) Preclinical development of human granulocyte-macrophage colony-stimulating factor-transfected melanoma cell vaccine using established canine cell lines and normal dogs. Cancer Gene Ther 6:26–36PubMedCrossRefGoogle Scholar
  31. 31.
    Hunter CA (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5:521–531PubMedCrossRefGoogle Scholar
  32. 32.
    Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, Vega F, Yu N, Wang J, Singh K, Zonin F, Vaisberg E, Churakova T, Liu M, Gorman D, Wagner J, Zurawski S, Liu YJ, Abrams JS, Moore KW, Rennick D, de Waal-Malefyt R, Hannum C, Bazan JF, Kastelein RA (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725PubMedCrossRefGoogle Scholar
  33. 33.
    Sheibanie AF, Tadmori I, Jing H, Vassiliou E, Ganea D (2004) Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J 18:1318–1320PubMedGoogle Scholar
  34. 34.
    Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Sttenhoff TH (2004) Human IL-23-producing type1 macrophages promote but IL-10-producing type2 macrophages subvert immunity to (myco) bacteria. Proc Natl Acad Sci USA 101:4560–4565PubMedCrossRefGoogle Scholar
  35. 35.
    Pirhonen J, Matikainen S, Julkunen I (2002) Regulation of virus-induced IL-12 and IL-23 expression in human macrophages. J Immunol 169:5673–5678PubMedGoogle Scholar
  36. 36.
    Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, Dhodapkar M, Krueger JG (2004) Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 199:125–130PubMedCrossRefGoogle Scholar
  37. 37.
    Chua AO, Chizzonite R, Desai BB, Truitt TP, Nunes P, Minetti LT, Warrier RR, Presky DH, Levine JF, Gately MK et al (1994) Expression cloning of a human IL-12 receptor component: a new member of the cytokine receptor superfamily with strong homology to gp130. J Immunol 153:128–136PubMedGoogle Scholar
  38. 38.
    Chua AO, Wilkinson VL, Presky DH, Gubler U (1995) Cloning and characterization of a mouse IL-12 receptor-beta component. J Immunol 155:4286–4294PubMedGoogle Scholar
  39. 39.
    Presky DH, Yang H, Minetti LJ, Chua AO, Nabavi N, Wu CY, Gately MK, Gubler U (1996) A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci USA 93:14002–14007PubMedCrossRefGoogle Scholar
  40. 40.
    Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F, To W, Wagner J, O’Farrell AM, McClanahan T, Zurawski S, Hannum C, Gorman D, Rennick DM, Kastelein RA, de Waal Malefyt R, Moore KW (2002) A receptor for the heterodimeric cytokine IL-23 composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708PubMedGoogle Scholar
  41. 41.
    Bellassonna ML, Renauld JC, Bianchi R, Vacca G, Fallarino F, Orabona C, Fioretti MC, Grohmann U, Puccetti P (2002) IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol 168:5448–5454Google Scholar
  42. 42.
    Bastos KRB, Marinho CRF, Barboza R, Russo M, Ălvarez JM, D’Império Lima MR (2004) What kind of message does IL-12/IL-23 bring to macrophages and dendritic cells? Microbes Infect 6:630–636PubMedCrossRefGoogle Scholar
  43. 43.
    Cau DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748CrossRefGoogle Scholar
  44. 44.
    Wiekowski MT, Leach MW, Evans EW, Sullivanl L, Chen SC, Vassileva G, Bazan JF, Gorman DM, Kastelein RA, Narula S, Lira SA (2001) Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility and premature death. J Immunol 166:7563–7570PubMedGoogle Scholar
  45. 45.
    Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of Interleukin-17. J Biol Chem 278:1910–1914PubMedCrossRefGoogle Scholar
  46. 46.
    Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 202:96–105PubMedCrossRefGoogle Scholar
  47. 47.
    Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, Roffler SR, Chiang BL, Lee CN, Wu CW, Tao MH (2003) Antitumour and antimetastatic activity of IL-23. J Immunol 171:600–607PubMedGoogle Scholar
  48. 48.
    Wang YQ, Ugai S, Shimozato O, Yu L, Kawamura K, Yamamoto H, Yamaguchi T, Saisho H, Tagawa M (2003) Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer 105:820–824PubMedCrossRefGoogle Scholar
  49. 49.
    Ugai S, Shimozato S, Yu L, Wang YQ, Kawamura K, Yamamoto H, Yamaguchi T, Saisho H, Sakiyama S, Tagawa M (2003) Transduction of the IL-21 and IL-23 genes in human pancreatic carcinoma cells produces natural killer cell-dependent and -independent antitumour effects. Cancer Gene Ther 10:771–778PubMedCrossRefGoogle Scholar
  50. 50.
    Shan BE, Yu L, Shimozato O, Li QX, Tagawa M (2004) Expression of interleukin-21 and -23 in human esophageal tumours produced antitumour effects in nude mice. Anticancer Res 24:79–82PubMedGoogle Scholar
  51. 51.
    Liebau C, Rosesl C, Schmidf S, Karreman C, Prisack JB, Bojar H, Merk H, Wolfram N, Baltzer AW (2004) Immunotherapy by gene transfer with plasmids encoding IL-12/IL18 is superior to IL-23/IL-18 gene transfer in a rat osteosarcoma model. Anticancer Res 24:2861–2867PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Research Center The Fourth Hospital of Hebei Medical University ShijiazhuangChina

Personalised recommendations