Cancer Immunology, Immunotherapy

, Volume 55, Issue 12, pp 1480–1490 | Cite as

In vitro priming of tumor-specific cytotoxic T lymphocytes using allogeneic dendritic cells derived from the human MUTZ-3 cell line

  • Saskia J. A. M. Santegoets
  • Marco W. J. Schreurs
  • Allan J. Masterson
  • Ying Poi Liu
  • Steffen Goletz
  • Hans Baumeister
  • Esther W. M. Kueter
  • Sinéad M. Lougheed
  • Alfons J. M. van den Eertwegh
  • Rik J. Scheper
  • Erik Hooijberg
  • Tanja D. de Gruijl
Original Article


The adoptive transfer of in vitro-induced and expanded tumor-specific cytotoxic T lymphocytes (CTL) presents a promising immunotherapeutic approach for the treatment of cancer. The in vitro induction of tumor-reactive CTL requires repeated stimulation of CTL precursors with dendritic cells (DC). To circumvent problems like scarcity of blood DC precursors and donor variability, it would be attractive to use DC from a non-autologous, unlimited source. DCs derived from the human acute myeloid leukemia (AML) cell line MUTZ-3 are attractive candidates since these DCs closely resemble monocyte-derived DC (MoDC) in terms of phenotype and T cell stimulatory capacity. Here we demonstrate that functional CTL clones could be generated against multiple tumor-associated antigens, i.e., human telomerase reverse transcriptase (hTERT), ErbB3-binding protein-1 (Ebp1), carcinoembryonic antigen (CEA) and Her-2/neu, by stimulating CD8β+ CTL precursors with peptide-loaded allogeneic, HLA-A2-matched MUTZ-3-derived DC. A consistent induction capacity, as determined by MHC tetramer-binding, was found in multiple donors and comparable to autologous peptide-loaded MoDC. Functional characterization at the clonal level revealed the priming of CTL that recognized endogenously processed epitopes on tumor cell lines in an HLA-A2-restricted fashion. Our data indicate that MUTZ-3-derived DC can be used as stimulator cells for in vitro priming and expansion of functional TAA-specific effector CTL. MUTZ-3-derived DCs thus represent a ready and standardized source of allogeneic DC to generate CTL for therapeutic adoptive transfer strategies.


Human dendritic cell line Tumor-associated antigens Immunization Immunotherapy Adoptive T cell transfer 



Antigen-presenting cell


Carcinoembryonic antigen


Cytotoxic T lymphocytes


Dendritic cell


Green fluorescent protein


Human telomerase reverse transcriptase


Monocyte-derived dendritic cell


Truncated form of nerve growth factor receptor


Peripheral blood mononuclear cell




Tumor-infiltrating lymphocyte





The authors wish to thank NEMOD Biotherapeutics for their financial support and the Maurits & Anna de Kock Foundation for financial support in the purchase of an HPLC.


  1. 1.
    Alexander-Miller MA, Leggatt GR, Berzofsky JA (1996) Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Natl Acad Sci USA 93:4102–4107CrossRefPubMedGoogle Scholar
  2. 2.
    Bender A, Sapp M, Schuler G et al (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 196:121–135CrossRefPubMedGoogle Scholar
  3. 3.
    Betts MR, Brenchley JM, Price DA et al (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281:65–78CrossRefPubMedGoogle Scholar
  4. 4.
    Carbone FR, Moore MW, Sheil JM et al (1988) Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med 167:1767–1779CrossRefPubMedGoogle Scholar
  5. 5.
    Crowley NJ, Slingluff CL Jr, Darrow TL et al (1990) Generation of human autologous melanoma-specific cytotoxic T-cells using HLA-A2-matched allogeneic melanomas. Cancer Res 50:492–498PubMedGoogle Scholar
  6. 6.
    Dudley ME, Nishimura MI, Holt AK et al (1999) Antitumor immunization with a minimal peptide epitope (G9-209-2M) leads to a functionally heterogeneous CTL response. J Immunother 22:288–298PubMedCrossRefGoogle Scholar
  7. 7.
    Dudley ME, Wunderlich JR, Robbins PF et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854CrossRefPubMedGoogle Scholar
  8. 8.
    Figdor CG, de Vries IJ, Lesterhuis WJ et al (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480CrossRefPubMedGoogle Scholar
  9. 9.
    Fonteneau JF, Larsson M, Somersan S et al (2001) Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells. J Immunol Methods 258:111–126CrossRefPubMedGoogle Scholar
  10. 10.
    Hamann D, Roos MT, van Lier RA (1999) Faces and phases of human CD8 T-cell development. Immunol Today 20:177–180CrossRefPubMedGoogle Scholar
  11. 11.
    Heemskerk MH, Hooijberg E, Ruizendaal JJ et al (1999) Enrichment of an antigen-specific T cell response by retrovirally transduced human dendritic cells. Cell Immunol 195:10–17CrossRefPubMedGoogle Scholar
  12. 12.
    Hooijberg E, Ruizendaal JJ, Snijders PJ et al (2000) Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J Immunol 165:4239–4245PubMedGoogle Scholar
  13. 13.
    Hu ZB, Ma W, Zaborski M et al (1996) Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia 10:1025–1040PubMedGoogle Scholar
  14. 14.
    Jameson SC, Hogquist KA Bevan MJ (1995) Positive selection of thymocytes. Annu Rev Immunol 13:93–126CrossRefPubMedGoogle Scholar
  15. 15.
    Jochmus I, Osen W, Altmann A et al (1997) Specificity of human cytotoxic T lymphocytes induced by a human papillomavirus type 16 E7-derived peptide. J Gen Virol 78(Pt 7):1689–1695PubMedGoogle Scholar
  16. 16.
    Kast WM, Offringa R, Peters PJ et al (1989) Eradication of adenovirus E1-induced tumors by E1A-specific cytotoxic T lymphocytes. Cell 59:603–614CrossRefPubMedGoogle Scholar
  17. 17.
    Kawashima I, Hudson SJ, Tsai V et al (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1–14CrossRefPubMedGoogle Scholar
  18. 18.
    Lustgarten J, Dominguez AL, Cuadros C (2004) The CD8+ T cell repertoire against Her-2/neu antigens in neu transgenic mice is of low avidity with antitumor activity. Eur J Immunol 34:752–761CrossRefPubMedGoogle Scholar
  19. 19.
    Masterson AJ, Sombroek CC, De Gruijl TD et al (2002) MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. Blood 100:701–703CrossRefPubMedGoogle Scholar
  20. 20.
    Morgan DJ, Kreuwel HT, Fleck S et al (1998) Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160:643–651PubMedGoogle Scholar
  21. 21.
    Nestle FO, Alijagic S, Gilliet M et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332CrossRefPubMedGoogle Scholar
  22. 22.
    Nestle FO, Banchereau J, Hart D (2001) Dendritic cells: on the move from bench to bedside. Nat Med 7:761–765CrossRefPubMedGoogle Scholar
  23. 23.
    Oelke M, Moehrle U, Chen JL et al (2000) Generation and purification of CD8+ melan-A-specific cytotoxic T lymphocytes for adoptive transfer in tumor immunotherapy. Clin Cancer Res 6:1997–2005PubMedGoogle Scholar
  24. 24.
    Peiper M, Goedegebuure PS, Alldinger I et al (2002) Comparison of various sources of antigen-presenting cells for the generation of GP2-tumor peptide specific cytotoxic T-lymphocytes. Anticancer Res 22:3357–3363PubMedGoogle Scholar
  25. 25.
    Prevost-Blondel A, Zimmermann C, Stemmer C et al (1998) Tumor-infiltrating lymphocytes exhibiting high ex vivo cytolytic activity fail to prevent murine melanoma tumor growth in vivo. J Immunol 161:2187–2194PubMedGoogle Scholar
  26. 26.
    Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327PubMedCrossRefGoogle Scholar
  27. 27.
    Rubio V, Stuge TB, Singh N et al (2003) Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 9:1377–1382CrossRefPubMedGoogle Scholar
  28. 28.
    Sallusto F, Lenig D, Forster R et al (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712CrossRefPubMedGoogle Scholar
  29. 29.
    Scardino A, Gross DA, Alves P et al (2002) HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168:5900–5906PubMedGoogle Scholar
  30. 30.
    Schreurs MW, Scholten KB, Kueter EW et al (2003) In vitro generation and life span extension of human papillomavirus type 16-specific, healthy donor-derived CTL clones. J Immunol 171:2912–2921PubMedGoogle Scholar
  31. 31.
    Schreurs MW, Kueter EW, Scholten KB et al (2005) Identification of a potential human telomerase reverse transcriptase-derived, HLA-A1-restricted cytotoxic T-lymphocyte epitope. Cancer Immunol Immunother 54:703–712CrossRefPubMedGoogle Scholar
  32. 32.
    Thurner B, Haendle I, Roder C et al (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669–1678CrossRefPubMedGoogle Scholar
  33. 33.
    Tsai V, Kawashima I, Keogh E et al (1998) In vitro immunization and expansion of antigen-specific cytotoxic T lymphocytes for adoptive immunotherapy using peptide-pulsed dendritic cells. Crit Rev Immunol 18:65–75PubMedGoogle Scholar
  34. 34.
    Tsang KY, Zaremba S, Nieroda CA et al (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87:982–990PubMedCrossRefGoogle Scholar
  35. 35.
    Tsang KY, Zhu M, Even J et al (2001) The infection of human dendritic cells with recombinant avipox vectors expressing a costimulatory molecule transgene (CD80) to enhance the activation of antigen-specific cytolytic T cells. Cancer Res 61:7568–7576PubMedGoogle Scholar
  36. 36.
    Van Parijs L, Abbas AK (1998) Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science 280:243–248CrossRefPubMedGoogle Scholar
  37. 37.
    Vermorken JB, Claessen AM, van Tinteren H et al (1999) Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 353:345–350CrossRefPubMedGoogle Scholar
  38. 38.
    Vonderheide RH, Hahn WC, Schultze JL et al (1999) The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10:673–679CrossRefPubMedGoogle Scholar
  39. 39.
    Wentworth PA, Celis E, Crimi C et al (1995) In vitro induction of primary, antigen-specific CTL from human peripheral blood mononuclear cells stimulated with synthetic peptides. Mol Immunol 32:603–612CrossRefPubMedGoogle Scholar
  40. 40.
    Xia X, Lessor TJ, Zhang Y et al (2001) Analysis of the expression pattern of Ebp1, an ErbB-3-binding protein. Biochem Biophys Res Commun 289:240–244CrossRefPubMedGoogle Scholar
  41. 41.
    Yee C, Thompson JA, Byrd D et al (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173CrossRefPubMedGoogle Scholar
  42. 42.
    Yoo JY, Wang XW, Rishi AK et al (2000) Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin. Br J Cancer 82:683–690CrossRefPubMedGoogle Scholar
  43. 43.
    Yssel H, de Vries JE, Koken M et al (1984) Serum-free medium for generation and propagation of functional human cytotoxic and helper T cell clones. J Immunol Methods 72:219–227CrossRefPubMedGoogle Scholar
  44. 44.
    Zeh HJ, III Perry-Lalley D, Dudley ME et al (1999) High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 162:989–994PubMedGoogle Scholar
  45. 45.
    Zhu MZ, Marshall J, Cole D et al (2000) Specific cytolytic T-cell responses to human CEA from patients immunized with recombinant avipox-CEA vaccine. Clin Cancer Res 6:24–33PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Saskia J. A. M. Santegoets
    • 1
  • Marco W. J. Schreurs
    • 1
  • Allan J. Masterson
    • 2
  • Ying Poi Liu
    • 1
  • Steffen Goletz
    • 3
    • 4
  • Hans Baumeister
    • 4
  • Esther W. M. Kueter
    • 1
  • Sinéad M. Lougheed
    • 2
  • Alfons J. M. van den Eertwegh
    • 2
  • Rik J. Scheper
    • 1
    • 5
  • Erik Hooijberg
    • 1
  • Tanja D. de Gruijl
    • 2
  1. 1.Departments of PathologyVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Medical OncologyVU University Medical CenterAmsterdamThe Netherlands
  3. 3.NEMOD BiotherapeuticsGmbH & Co. KGBerlinGermany
  4. 4.GLYCOTOPE GmbHBerlinGermany
  5. 5.AmsterdamThe Netherlands

Personalised recommendations