Advertisement

Cancer Immunology, Immunotherapy

, Volume 55, Issue 1, pp 85–95 | Cite as

Immunogenic HER-2/neu peptides as tumor vaccines

  • Constantin N. Baxevanis
  • Nectaria N. Sotiriadou
  • Angelos D. Gritzapis
  • Panagiota A. Sotiropoulou
  • Sonia A. Perez
  • Nike T. Cacoullos
  • Michael Papamichail
Symposium Paper

Abstract

During the last decade, a large number of tumor-associated antigens (TAA) have been identified, which can be recognized by T cells. This has led to renewed interest in the use of active immunization as a modality for the treatment of cancer. HER-2/neu is a 185-KDa receptor-like glycoprotein that is overexpressed by a variety of tumors including breast, ovarian, lung, prostate and colorectal carcinomata. Several immunogenic HER-2/neu peptides recognized by cytotoxic T lymphocytes (CTL) or helper T lymphocytes (TH) have been identified thus far. Patients with HER-2/neu over-expressing cancers exhibit increased frequencies of peripheral blood T cells recognizing immunogenic HER-2/neu peptides. Various protocols for generating T cell-mediated immune responses specific for HER-2/neu peptides have been examined in pre-clinical models or in clinical trials. Vaccination studies in animals utilizing HER-2/neu peptides have been successful in eliminating tumor growth. In humans, however, although immunological responses have been detected against the peptides used for vaccination, no clinical responses have been described. Because HER-2/neu is a self-antigen, functional immune responses against it may be limited through tolerance mechanisms. Therefore, it would be interesting to determine whether abrogation of tolerance to HER-2/neu using appropriate adjuvants and/or peptide analogs may lead to the development of immune responses to HER-2/neu epitopes that can be of relevance to cancer immunotherapy. Vaccine preparations containing mixtures of HER-2/neu peptides and peptide from other tumor-related antigens might also enhance efficacy of therapeutic vaccination.

Keywords

Vaccines CTL epitopes TH epitopes HER-2/neu Tolerance 

Notes

Acknowledgements

We wish to thank Miss Joanna Doukoumopoulou for her excellent secretarial assistance

References

  1. 1.
    Ahmad-Najad P, Hacke H, Rutz M, Bauer S, Vabulas RM, Wagner H (2002) Bacterial DNA and lipopolysaccharides active Toll-like receptors at distinct cellular compartments. Eur J Immunol 32:1958CrossRefPubMedGoogle Scholar
  2. 2.
    Amarnath SM, Dyer CE, Ramesh A, Iwuagwu O, Drew PJ, Greenman J (2004) In vitro quantification of the cytotoxic T lymphocyte response against human telomerase reverse transcriptase in breast cancer. Int J Oncol 25:211PubMedGoogle Scholar
  3. 3.
    Andersen MH, Pedersen LO, Becker JC, Straten PT (2001) Identification of a cytotoxic T lymphocyte reponse to the apoptosis inhibitor protein survirin in cancer patients. Cancer Res 61:869PubMedGoogle Scholar
  4. 4.
    Anderson BW, Kudelka AD, Honda T, Pollack MS, Gershenson DM, Gillogly MA, Murray JI, Ioannides CG (2000) Induction of determinant spreading and of TH1 responses by in vitro stimulation with HER-2 peptides. Cancer Immunol Immunother 49:459CrossRefPubMedGoogle Scholar
  5. 5.
    Baxevanis CN, Gritzapis AD, Tsitsilonis OE, Katsoulas HL, Papamichail M (2002) HER-2/neu-derived epitopes are also recognized by cytotoxic CD3+ CD56+ (Natural killer T) lymphocytes. Int J Cancer 98:864CrossRefPubMedGoogle Scholar
  6. 6.
    Baxevanis CN, Sotiropoulou PA, Sotiriadou NN, Papamichail M (2004) Immunobiology of HER-2/neu oncoprotein and its potential application in cancer immunotherapy. Cancer Immunol Immunother 53:166CrossRefPubMedGoogle Scholar
  7. 7.
    Baxevanis CN, Voutsas IF, Tsitsilonis OE, Gritzapis AD, Sotiriadou R, Papamichail M (2000) Tumor-specific CD4+ T lymphocytes from cancer patients are required for optimal induction of cytotoxic T cells against the autologous tumor. J Immunol 164:3902PubMedGoogle Scholar
  8. 8.
    Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatbility antigens. Nature 329:512CrossRefPubMedGoogle Scholar
  9. 9.
    Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen HLA-A2. Nature 329:506CrossRefPubMedGoogle Scholar
  10. 10.
    Blackburn EH (1992) Telomerases. Annu Rev Biochem 61:113CrossRefPubMedGoogle Scholar
  11. 11.
    Bownds S, Tong-On P, Rosenberg SA, Parkhurst M (2001) Induction of tumor-reactive cytotoxic T-lymphocytes using a peptide from NY-ESO-1 modified at the carboxy-terminus to enhance HLA-A2.1 binding affinity and stability in solution. J Immunother 24:1CrossRefPubMedGoogle Scholar
  12. 12.
    Brossart P, Stuhler G, Flad T, Stevanovic S, Sammensee HG, Kanz L, Brugger W (1998) HER-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58:732PubMedGoogle Scholar
  13. 13.
    Castilleja A, Carter D, Efferson CL, Ward NE, Kawano K, Fisk B, Kudelka AP, Gershenson DM, Murray JI, O’Brian CA, Ioannides CG (2002) Induciton of tumor-reactive CTL by C-side chain variants of the CTL epitope HER-2/neu proton-ogene (369-377) selected by molecular modeling of the peptide HLA-A2 complex. J Immunol 169:3545PubMedGoogle Scholar
  14. 14.
    Celis E, Tsai V, Crimi C, DeMars R, Wentworth PA, Chesnut RW, Grey HM, Sette A, Serra HM (1994) Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci USA 91:2105PubMedGoogle Scholar
  15. 15.
    Chen PW, Ananthaswamy HN (1993) Rejection of K1735 murine melanoma in syngeneic hosts required expression of MHC class I antigens and either class II antigens of IL-2. J Immunol 151:244PubMedGoogle Scholar
  16. 16.
    D’Amaro J, Houbiers JG, Drijfhout JW, Brandt RMP, Schipper R, Bavinck JN, Melief CJM, Kast WM (1995) A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class I peptide-binding motifs. Hum Immunol 43:13CrossRefPubMedGoogle Scholar
  17. 17.
    Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Shiffmann K (2002) Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20:2624CrossRefPubMedGoogle Scholar
  18. 18.
    Disis ML, Rinn K, Knutson KL, Davis D, Caron D, dela Rosa C, Schiffman K (2002) FLt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers. Blood 99:2845CrossRefPubMedGoogle Scholar
  19. 19.
    Eccles SA (2001) The role c-erbB-2/HER-2/neu in breast cancer progression and metastasis. J Mammary Gland Biol Neoplasia 6:393CrossRefPubMedGoogle Scholar
  20. 20.
    Engelhard VH (1994) Structure of peptides associated with MHC class I molecules. Curr Opin Immunol 6:13CrossRefPubMedGoogle Scholar
  21. 21.
    Ercolini AM, Machiels J-PH, Chen YC, Slansky JE, Giedlen M, Reilly RT, Jaffee EM (2003) Identification and characterization of the immunodominant rat HER-2/neu MHC class I epitope presented by spontaneous mammary tumor from HER-2/neu-transgenic mice. J Immunol 170:4273PubMedGoogle Scholar
  22. 22.
    Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290CrossRefPubMedGoogle Scholar
  23. 23.
    Farina C, Theil D, Semlinger B, Hohlfeld R, Meinl E (2004) Distinct responses of monocytes to Toll-like receptor ligands and imflammatory cytokines. Int Immunol 16:799CrossRefPubMedGoogle Scholar
  24. 24.
    Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor- specific cytotoxic T lymphocyte lines. J Exp Med 181:2109CrossRefPubMedGoogle Scholar
  25. 25.
    Fisk B, Chesak B, Pollack MS, Wharton JT, Ioannides CG (1994) Oligopeptide induction of a cytotoxic T lymphocyte response to HER-2/neu proto-oncogene in vitro. Cell Immunol 157:415CrossRefPubMedGoogle Scholar
  26. 26.
    Fisk B, Hudson JM, Kavanagh J, Wharton JT, Murray JL, Ioannides CG, Kudelka AP (1997) Existent proliferative response of peripheral blood mononuclear cells from healthy donors and ovarian cancer patients to HER-2 peptides. Anticancer Res 17:45PubMedGoogle Scholar
  27. 27.
    Fong L, Brockstedt D, Benike C et al Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy from HER-2/neu-transgenic mice. J Immunol 170:4273Google Scholar
  28. 28.
    Goodison S, Viars C, Urquidi V (2005) Molecular cytogenetic analysis of a human breast metastasis model: identification of phenotype-specific chromosomal rearrangements. Cancer Genet Cytogenet 156:37CrossRefPubMedGoogle Scholar
  29. 29.
    Gritzapis AD, Sotiriadou NN, Papamichail M, Baxevanis CN (2004) Generation of human tumor-specific CTLs in HLA-A2.1 trangenic mice using unfractionated peptides from eluates of human primary breast and ovarian tumors. Cancer Immunol Immunother 53:1027CrossRefPubMedGoogle Scholar
  30. 30.
    Guy CT, Webmaster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ (1992) Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic diseases. Proc Natl Acad Sci USA 89:10578PubMedGoogle Scholar
  31. 31.
    Hausmann S, Martin M, Gauthier L, Wucherpfennig K (1999) Structural features of autoreactive TCR that determine the degree of degenerary in peptide recognition. J Immunol 162:338PubMedGoogle Scholar
  32. 32.
    Hemmi H, Takeuchi O, Kawai T, Kaison T, Sato S, Sanjo H, Mattimoto Hoshino K, Wagner H, Takeda K, Akira SA (2000) Toll-like receptor recognize bacterial DNA. Nature 408:740CrossRefPubMedGoogle Scholar
  33. 33.
    Hernandez J, Schoeder P, Blondelle SE, Pons FG, Lone YC, Simora A, Langlade-Demoyen P, Wilson DB, Zanetti M (2004) Antigenicity and immunogenicity of peptide analogues of a low affinity peptide of the human telomerase reverse transcriptase tumor antigen. Eur J Immunol 34:2331CrossRefPubMedGoogle Scholar
  34. 34.
    Hirohashi Y, Torigoe T, Maeda A, Nabeta Y, Kamiguchi K, Sato T, Yoda J, Ikeda H, Hirata K, Yamanaka N, Sato N (2002) An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survirin. Clin Cancer Res 8:1731PubMedGoogle Scholar
  35. 35.
    Hori S, Takahashi T, Sakeguchi S (2003) Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 81:331PubMedGoogle Scholar
  36. 36.
    Ikeda H, Chamoto K, Tsuji T, Suzuki Y, Wakita D, Takeshima T, Takashi N (2004) The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Sci 95:697CrossRefPubMedGoogle Scholar
  37. 37.
    Ito T, Shiraki K, Sugomoto K, Yamanaka T, Fujikawa K, Ito M, Takase K, Moriyama M, Kawano H, Hayashida M, Nakano Y, Suzuki A (2000) Survirin promotes cell proliferation in human hepatocellular carcinoma. Hepatology 31:1080CrossRefPubMedGoogle Scholar
  38. 38.
    Kageshita T, Hirai S, Ono T, Hicklin DJ, Ferrone S (1999) Down-regulation of HLA class I antigen-processing molecules in malignant melanoma: association with disease progression. Am J Pathol 154:745PubMedGoogle Scholar
  39. 39.
    Kawai K, Ohashi PS (1995) Immunological function of a defined T cell population tolerized to low-affinity self antigens. Nature 374:68CrossRefPubMedGoogle Scholar
  40. 40.
    Kawakami Y, Eliyadu S, Sakaguchi K, Robbins PF, Rivoltini I, Yannelli JR, Apella E, Rosenberg SA (1994) Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 180:347CrossRefPubMedGoogle Scholar
  41. 41.
    Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E, Sette A, Celis E (1998) The multiepitope approach for immunotherapy of cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1CrossRefPubMedGoogle Scholar
  42. 42.
    Kawashima I, Tsai V, Southwood S, Takesako K, Sette A, Celis E (1999) Identification of HLA-A3-restricted cytotoxic T lymphocytes epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells. Cancer Res 59:431PubMedGoogle Scholar
  43. 43.
    Keogh E, Fikes J, Southwood S, Celis E, Chesnut R, Sette A (2001) Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity. J Immunol 167:787PubMedGoogle Scholar
  44. 44.
    Kessler JH, Beekman NJ, Bres-Vloemans SA, Verdijk P, van Veelen PA, Kloosterman-Joosten AM, Vissers DC, ten Bosch GJ, Kester MG, Sijts A, Drijfhout JW, Ossendorp F, Offringa R, Melief CJM (2001) Efficient identification of novel HLA-A*0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 193:73CrossRefPubMedGoogle Scholar
  45. 45.
    Kiessling R, Wel WZ, Herrmann F, Lindencrona JA, Cheudhury A, Kono K, Seliger B (2002) Cellular immunity to the HER-2/neu protooncogene. Adv Cancer Res 85:101PubMedCrossRefGoogle Scholar
  46. 46.
    Kim NW (1997) Clinical implications of telomerase in cancer. Eur J Cancer 33:781CrossRefPubMedGoogle Scholar
  47. 47.
    Knutson KL, Shiftmann K, Cheever MA, Disis ML (2002) Immunization of cancer patients with a HER-2/neu. HLA-A2 peptide, p369-377, results in short-lived peptide-specific immunity. Clin Cancer Res 8:1014PubMedGoogle Scholar
  48. 48.
    Knutson KL, Shiftmann K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity to cancer patients. J Clin Invest 107: 477PubMedCrossRefGoogle Scholar
  49. 49.
    Kobayashi H, Wood M, Song Y, Appelle E, Celis E (2000) Defining promiscuous MHC class II helper T-cell epitopes for HER-2/neu tumor antigen. Cancer Res 60:52258Google Scholar
  50. 50.
    Kondo A, Sidney J, Southwood S, del Guercio MF, Appella E, Sakamoto H, Celis E, Grey HM, Chesnut RW, Kubo RT (1995) Prominent roles of secondary anchor residues in peptide binding to HLA-A24 human class I molecules. J Immunol 155:4307PubMedGoogle Scholar
  51. 51.
    Kono K, Rongcun Y, Charo J, Ichihara F, Celis E, Sette A, Appellia E, Sekikawa T, Matshumoto Y, Kiessling R (1998) Identification of HER-2/neu-derived peptide epitopes recognized by gastric cancer-specific cytotoxic T lymphocytes. Int J Cancer 78:202CrossRefPubMedGoogle Scholar
  52. 52.
    Kuhns JJ, Batalia MA, Shuqin Y, Collins EJ (1999) Poor binding of a HER-2/neu epitope (GP2) to HLA-A2.1 is dues to a lack of interaction with the center of the peptide. J Biol Chem 274:26422CrossRefGoogle Scholar
  53. 53.
    Bohlen P, Hicklin DJ (2003)Vaccination against angiogenesis-associated antigens: a novel cancer immunotherapy strategy. Curr Mol Med 3:773. ReviewCrossRefPubMedGoogle Scholar
  54. 54.
    Liu J-Y, Wei Y, Yang L, Zhao X,, Tian L, Hou J, Niu Y, Liu F, Jiang Y, Xu B, Wy Y, Su J, Lou Y, He Q, Wen Y, Yang J, Kan B, Mao Y, Luo F, Peng F (2003) Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood 102:1815CrossRefPubMedGoogle Scholar
  55. 55.
    Lustgarten L, Dominguez AL, Guadros C (2004) The CD8+ T cell repertoire against HER-2/neu antigens in new transgenic mice is of low avidity with antitumor activity. Eur J Immunol 34:752CrossRefPubMedGoogle Scholar
  56. 56.
    Lustgarten J, Theobald M, Labadie C, LaFace D, Peterson P, Disis ML, Cheever MA, Sherman LA (1997) Identification of HER-2/neu CTL epitopes using double transgenic mice expressing HLA-A2.1 and human CD8. Hum Immunol52:109CrossRefPubMedGoogle Scholar
  57. 57.
    Morel S, Levy F, Burlet-Schiltz O, Brasseur F, Probst-Kepper M, Peitrequin Al, Monsarrat B, Van Veithove R, Cerottini JC, Boon T, Gairin JE, Van den Eynde BJ (2000) Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12:107CrossRefPubMedGoogle Scholar
  58. 58.
    Morgan DK, Kreuwell HT, Fleck S, Levitsky HI, Pardoll DM, Sherman LA(1998) Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160:643PubMedGoogle Scholar
  59. 59.
    Moriai R, Asanuma K, Kobayashi D, Yajima T, Yagihashi A, Yamada M, Watanabe N. Quantitative analysis of this anti-apoptotic gene survivin-expression in malignant haematopoietic cells. Anticancer Res 21:595Google Scholar
  60. 60.
    Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:104CrossRefGoogle Scholar
  61. 61.
    Mullins DW, Bullock TN, Colella TA, Robila VV, Engelhard VH (2001) Immune responses to the HLA-A*0201-restricted epitopes of tyrosinase and glycoprotein 100 enable control of melanoma outgrowth in HLA-A*0201- transgenic mice. J Immunol 167:4853PubMedGoogle Scholar
  62. 62.
    Murray JL, Przepiorka D, Ioannides C (2000) Clinical trials of HER-2/neu-specific vaccines. Semin Oncol 27:71PubMedGoogle Scholar
  63. 63.
    Nakamura TM, Morin GH, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997) Science 277:955CrossRefPubMedGoogle Scholar
  64. 64.
    Niethammer AG, Xiang R, Becker JC, Wodrsch H, Derte U, Karsten G, Eliceiri BP, Reisfeld RA (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8:1369CrossRefPubMedGoogle Scholar
  65. 65.
    Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188:277CrossRefPubMedGoogle Scholar
  66. 66.
    Paik S, Hazan R, Fisher ER, Sass RE, Fisher B, Redmond C, Schlessinger J, Lippman ME, King CR (1990) Pathologic findings from the National Surgical Adjuvant Breast and Bowell Project:prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 8:103PubMedGoogle Scholar
  67. 67.
    Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163PubMedGoogle Scholar
  68. 68.
    Parkhurst MR, Riley JP, Igarashi T, Li Y, Robbins PF, Rosenberg SA (2004) Immunization of patients with hTERT: 540-548 peptide induces peptide-reactive T lymphocytes that do not recognize tumors endogenously expressing tolemerase. Clin Cancer Res 15:4688CrossRefGoogle Scholar
  69. 69.
    Peiper M, Goedegebuure MP, Linehan DC, Ganguly E, Douville CC, Eberlein TJ (1997) The HER-2/neu-derived peptide p654-662 is a tumor-associated antigen in human pancreatic cancer recognized by cytotoxic T lymphocytes. Eur J Immunol 27:1115PubMedGoogle Scholar
  70. 70.
    Perez SA, Sotiropoulou PA, Sotiriadou NM, Mamalaki A, Gritzapis AD, Echner H, Voelter W, Pawelec G, Papamichail M, Baxevanis CN (2002) HER-2/neu-derived peptide 884-899 is expressed by human breast, colorectal and pancreatic adenocarcinomas and is recognized by in-vitro-induced specific CD4+ T cell clones. Cancer Immunol Immunother 50:615CrossRefPubMedGoogle Scholar
  71. 71.
    Plum SM, Fogmer WE (2004) Anti-angiogenic vaccines as a treatment modality for cancer. Curr Opin Investig Drugs 5:1243PubMedGoogle Scholar
  72. 72.
    Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213CrossRefPubMedGoogle Scholar
  73. 73.
    Reisfeld RA, Niethammer AG, Luo Y, Xiang R (2004) DNA vaccines suppress tumor growth and metastases by the induction of anti-angiogenesis. Immunol Rev 199:181CrossRefPubMedGoogle Scholar
  74. 74.
    Reker S, Meier A, Holten-Andersen L, Svane IM, Becker JC, thor Straten P, Andersein MH (2004) Identification of novel survirin-derived CTL epitopes. Cancer Biol Ther 3:173PubMedGoogle Scholar
  75. 75.
    Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474CrossRefPubMedGoogle Scholar
  76. 76.
    Rivoltini L, Squarcina P, Loftus DJ, Castelli C, Tarsini P, Mazzocchi A, Rini F, Viggiano V, Belli F, Parmiani G (1999) A superagonist variant of peptide MART1/Melan A27-35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res 39:301Google Scholar
  77. 77.
    Rongcun Y, Salazar-Onfray F, Charo J, Malmberg KJ, Evrin K, Maes H, Komo K, Hising C, Petersson M, Larsson O, Lan L, Appella E, Sette A, Celis E, Kiessling R (1999) Identification of new HER-2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 163:1037PubMedGoogle Scholar
  78. 78.
    Ruppert J, Sidney J, Celis E, Kubo RT, Grey HM, Sette A (1993) Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules.Cell 74:929CrossRefPubMedGoogle Scholar
  79. 79.
    Salazar E, Zaremba S, Arlen PM, Tsang KY, Schlom J (2000) Agonist peptide from a cytotoxic T-lymphocyte epitope of human carcinoembryonic antigen stimulates production of TC1-type cytokines and increases tyrosine phosphorylation more efficiently than cognate peptide. Int J Cancer 85:829CrossRefPubMedGoogle Scholar
  80. 80.
    Sanchez-Garcia L, Grutz G (1995) Tumorigenic activity of the BCR-ABL oncogenes is mediated by BCL2. Proc Natl Acad Sci USA 92:5287PubMedGoogle Scholar
  81. 81.
    Scardino A, Alves P, Gross DA, Tourdot S, Graff-Dubois S, Angevin E, Firat H, Chouaib S, Lemonnier F, Nadler LM, Cardoso AA, Kosmatopoulos K (2001)Identification of HER-2/neu immunogenic epitopes presented by renal cell carcinoma and other human epithelial tumors. Eur J Immunol 31:3261CrossRefPubMedGoogle Scholar
  82. 82.
    Scardino A, Gross D-A, Alves P, Schultze JL, Graff-Dubois S, Faure O, Tourdot S, Chouaib S, Nadler LM, Lemonnier FA, Vonderheide RH, Cardoso AA, Kospatopoulos K (2002) HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168:5900PubMedGoogle Scholar
  83. 83.
    Schoenberger PS, Toes RE, van der Voort EI, Offringa R, Melief CJM (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480CrossRefPubMedGoogle Scholar
  84. 84.
    Sercarz EE (2000) Driver clones and determinant spreading. J Autoimmun 14:275CrossRefPubMedGoogle Scholar
  85. 85.
    Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K (1993) Dominance and crypticity of T-cell antigenic determinants. Ann Rev Immunol 11:729CrossRefGoogle Scholar
  86. 86.
    Serody JS, Collins EJ, Tisch RM, Kuhns JJ, Freilinger JA (2000) T cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery. J Immunol 164:4961PubMedGoogle Scholar
  87. 87.
    Shiku H, Wang L, Ikuta Y, Okugawa T, Schmitt M, Gu X, Akiyoshi K, Sunamoto J, Nakamura H (2000) Development of a cancer vaccine: peptides, proteins and DNA. Cancer Chemother Pharmacol 46:77CrossRefGoogle Scholar
  88. 88.
    Sidney J, Southwood S, del Guercio MF, Grey HM, Chesnut RW, Kubo RT, Sette A (1996) Specificity and degenerary in peptide binding to HLA-B7-like class I molecules. J Immunol 157:3480PubMedGoogle Scholar
  89. 89.
    Slansky JE, Rattis FM, Boyd IF, Fahmy T, Jaffee EM, Schneck JP, Margulles DH, Pardoll DM (2000) Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 13:529CrossRefPubMedGoogle Scholar
  90. 90.
    Smith SD, Wheeler MA, Plescia J, Colberg JW, Weiss RM, Altieri DC (2001) Urine detection of survirin and diagnosis of bladder cancer. J Am Med Assoc 285:324CrossRefGoogle Scholar
  91. 91.
    Sotiriadou R, Perez SA, Gritzapis AD, Sotiropoulou PA, Echner H, Heinzel S, Mamalaki A, Pawelec G, Voelter W, Baxevanis CN, Papamichail M (2001) Peptide HER2 (776-788) represents a naturally processed broad MHC class II-restricted T cell epitope. Br J Cancer 85:1527CrossRefPubMedGoogle Scholar
  92. 92.
    Sotiropoulou PA, Perez SA, Hliopoulou EG, Missitzis I, Voelter W, Echner H, Baxevanis CN, Papamichail M (2003) Cytotoxic T-cell precursor frequencies to HER-2 (369-377) in patients with HER-2/neu-positive epithelial tumors. Br J Cancer 80:1055CrossRefGoogle Scholar
  93. 93.
    Sotiropoulou PA, Perez SA, Voelter W, Echner H, Missitzis I, Tsavaris NB, Papamichail M, Baxevanis CN (2003) Natural CD8+ T cell responses against MHC class I epitopes of the HER-2/neu oncoprotein in patients with epithelial tumors. Cancer Immunol Immunother 52:771CrossRefPubMedGoogle Scholar
  94. 94.
    Tajima K, Ito Y, Demachi A, Nishida K, Akatsuka Y, Tsujimura K, Hida T, Morishima Y, Kuwano H, Mitsudomi T, Takahashi T, Kuzushima K (2004) Interferon-gamma differentially regulates susceptibility of lung cancer cells to telomerase-specific cytotoxic T lymphocytes. Int J Cancer 20:403CrossRefGoogle Scholar
  95. 95.
    Tanaka K, Iwamoto S, Gon G, Nohara T, Iwamoto M, Tanigawa N (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Cancer Res 6:127PubMedGoogle Scholar
  96. 96.
    Titu LV, Loveday RL, Maden LA, Cawkwell L, Monson JR, Greenman J (2004) Cytotoxic T-cell immunity against telomerase reverse transcriptase in colorectal cancer patients. Oncol Rep 12:871PubMedGoogle Scholar
  97. 97.
    Thomas DG, Giordano TJ, Sanders D, Biermann S, Sondak UK, Trent JC, Pollock RE, Baker L (2005) Expression of receptor tyrosine kinases epidermal growth factor receptor and HER-2/neu in synovial sarcoma. Cancer 103:830CrossRefPubMedGoogle Scholar
  98. 98.
    Tsai V, Southwood S, Sidney J, Sakaguchi K, Kawakami Y, Appella E, Sette A, Celis E (1997) Identification of subdominant CTL epitopes of the gp100 melanoma-associated tumor antigen by primary in vitro immunization with peptide-pulsed dendritic cells. J Immunol 158:1796PubMedGoogle Scholar
  99. 99.
    Tuttle TM, Anderson BW, Thompson WE, Lee JE, Sahin A, Smith Tl, Grabstein KH, Wharton T, Ioannides CG, Murray JL (1998) Proliferative and cytokine reponses to class II HER-2/neu-associated peptides in breast cancer. Clin Cancer Res 4:2015PubMedGoogle Scholar
  100. 100.
    Valmori D, Levy F, Miconnet I, Zajac P, Spagnoli GC, Rimold D, Lienard D, Cerrundolo J, Cerrotini C, Romero P (2000) Induction of potent antitumor CTL responses by recombinant vaccinia encoding a Melan-peptide analogue. J Immunol 164:1125PubMedGoogle Scholar
  101. 101.
    Vertuani S, Sette A, Sidney J, Southwood S, Fikes J, Keogh E, Lindencrona JA, Ishioka G, Levitskaya J, Kiessling R (2004) Improved immunogenicity of an immunodominant epitope of the HER-2/neu protooncogene by alterations of MHC contact residues. J Immunol 172:3501PubMedGoogle Scholar
  102. 102.
    Watson MB, Bahia H, Ashman JN, Berrieman HK, Drew P, Lind MJ, Greenman J, Cawkwell L (2004) Chromosomal alterations in breast cancer revealed by multicolour fluorescence in situ hybridization. Int J Oncol 25:277PubMedGoogle Scholar
  103. 103.
    Wang RF (1999) Human tumor antigens: implications for cancer vaccine development. J Mol Med 77:640CrossRefPubMedGoogle Scholar
  104. 104.
    Wei YQ, Huang MJ, Yang L, Zhao X, Thian L, Lu Y, Shu JM, Lu CJ, Niu T, Kang B, Mao YQ et al (2001) Immunogene therapy of tumours with vaccine based on xenopus homologous vascular endothelial growth factor as a model antigen. Proc Natl Acad Sci USA 98:11545CrossRefPubMedGoogle Scholar
  105. 105.
    Williams NS, Gaynor RB, Scoggin S, Verna U, Gokaslan T, Simmang C, Flemming J, Tavana D, Frenkel E, Becerra C (2003) Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin Cancer Res 9:931PubMedGoogle Scholar
  106. 106.
    Worley BS, van den Broeke IT, Goletz TJ, Pendleton CD, Daschbach EM, Thomas EK, Marincola FM, Helman LJ, Berzolsky JA (2001) Antigenicity of fusion proteins from sarcoma-associated chromosomal translocations. Cancer Res 61:6868PubMedGoogle Scholar
  107. 107.
    Yi H, Fujimura Y, Ouchida M, Prasad DD, Rao VN, Reddy ES (1997) Inhibition of apoptosis by normal and aberrant Fli-1 and erg proteins involved in human solid tumors and leukemias. Oncogene 14:1259CrossRefPubMedGoogle Scholar
  108. 108.
    Yoshimura A, Shiku H, Nakayama E (1993) Rejection of an IA+ variant line of FBL-3 leukemia by cytotoxic T lymphocytes with CD4+ and CD4 CD8+ T cell receptor-αβ phenotypes generated in CD8-depleted C57BL/6 mice. J Immunol 150:4900PubMedGoogle Scholar
  109. 109.
    Zaks TZ, Rosenberg SA (1998) Immunization with a peptide epitope (p369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 58:4902PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Constantin N. Baxevanis
    • 1
  • Nectaria N. Sotiriadou
    • 1
  • Angelos D. Gritzapis
    • 1
  • Panagiota A. Sotiropoulou
    • 1
  • Sonia A. Perez
    • 1
  • Nike T. Cacoullos
    • 1
  • Michael Papamichail
    • 1
  1. 1.Cancer Immunology and Immunotherapy CenterSt. Savas HospitalAthensGreece

Personalised recommendations