Cancer Immunology, Immunotherapy

, Volume 54, Issue 11, pp 1043–1058

T cell-mediated graft-versus-leukemia reactions after allogeneic stem cell transplantation

  • Johannes Schetelig
  • Alexander Kiani
  • Marc Schmitz
  • Gerhard Ehninger
  • Martin Bornhäuser
Review

Abstract

Allogeneic hematopoietic stem cell transplantation represents the only curative approach for many hematological malignancies. During the last years the impact of the conditioning regimen has been re-assessed. With the advent of reduced-intensity conditioning the paradigm has changed from cytoreduction executed by high-dose radio-chemotherapy to immunological surveillance of leukemia by donor cells. Distinct subsets of T cells and NK cells contribute to graft-versus-leukemia reactions. So far, cytotoxic T lymphocytes are the mainstay of allogeneic immunotherapy. Here, we summarise the current knowledge of T cell-mediated graft-versus-leukemia reactions and present results from pre-clinical and clinical studies of T cell-based adoptive immunotherapy. We address the issues of feasibility and specificity of adoptive immunotransfer from a clinical point of view and discuss the prerequisites for successful clinical applications. Finally, the prospects for immunological research that have evolved with the increasing use of reduced-intensity conditioning and allogeneic stem cell transplantation are highlighted.

Keywords

Allogeneic hematopoietic stem cell transplantation Reduced-intensity conditioning Graft-versus-leukemia effects Minor histocompatibility antigens Tumor antigens 

References

  1. 1.
    Clift RA, Buckner CD, Appelbaum FR, Bearman SI, Petersen FB, Fisher LD, Anasetti C, Beatty P, Bensinger WI, Doney K et al (1990) Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood 76:1867PubMedGoogle Scholar
  2. 2.
    Clift RA, Buckner CD, Appelbaum FR, Bryant E, Bearman SI, Petersen FB, Fisher LD, Anasetti C, Beatty P, Bensinger WI et al (1991) Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood 77:1660PubMedGoogle Scholar
  3. 3.
    Blume KG, Long GD, Negrin RS, Chao NJ, Kusnierz-Glaz C, Amylon MD (1994) Role of etoposide (VP-16) in preparatory regimens for patients with leukemia or lymphoma undergoing allogeneic bone marrow transplantation. Bone Marrow Transplant 14(Suppl 4):S9PubMedGoogle Scholar
  4. 4.
    Lynch MH, Petersen FB, Appelbaum FR, Bensinger WI, Clift RA, Storb R, Sanders JE, Hansen JA, Buckner CD (1995) Phase II study of busulfan, cyclophosphamide and fractionated total body irradiation as a preparatory regimen for allogeneic bone marrow transplantation in patients with advanced myeloid malignancies. Bone Marrow Transplant 15:59PubMedGoogle Scholar
  5. 5.
    Mathe G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M (1965) Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res 25:1525PubMedGoogle Scholar
  6. 6.
    Mathe G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M, Devries MJ, Tubiana M, Lalanne C, Binet JL, Papiernik M, Seman G, Matsukura M, Mery AM, Schwarzmann V, Flaisler A (1965) Successful Allogenic Bone Marrow Transplantation in Man: Chimerism, Induced Specific Tolerance and Possible Anti-Leukemic Effects. Blood 25:179PubMedGoogle Scholar
  7. 7.
    Mathe G (1972) Immunotherapy in leukemia. Experimental and clinical approaches. Ser Haematol 5:66PubMedGoogle Scholar
  8. 8.
    Bortin MM, Truitt RL, Rimm AA, Bach FH (1979) Graft-versus-leukaemia reactivity induced by alloimmunisation without augmentation of graft-versus-host reactivity. Nature 281:490PubMedGoogle Scholar
  9. 9.
    Weiss L, Morecki S, Vitetta ES, Slavin S (1983) Suppression and elimination of BCL1 leukemia by allogeneic bone marrow transplantation. J Immunol 130:2452PubMedGoogle Scholar
  10. 10.
    Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G, Varadi G, Kirschbaum M, Ackerstein A, Samuel S, Amar A, Brautbar C, Ben Tal O, Eldor A, Or R (1998) Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91:756PubMedGoogle Scholar
  11. 11.
    Champlin R, Khouri I, Shimoni A, Gajewski J, Kornblau S, Molldrem J, Ueno N, Giralt S, Anderlini P (2000) Harnessing graft-versus-malignancy: non-myeloablative preparative regimens for allogeneic haematopoietic transplantation, an evolving strategy for adoptive immunotherapy. Br J Haematol 111:18CrossRefPubMedGoogle Scholar
  12. 12.
    McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG, Chauncey TR, Gooley TA, Hegenbart U, Nash RA, Radich J, Wagner JL, Minor S, Appelbaum FR, Bensinger WI, Bryant E, Flowers ME, Georges GE, Grumet FC, Kiem HP, Torok Storb B, Yu C, Blume KG, Storb RF (2001) Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 97:3390CrossRefPubMedGoogle Scholar
  13. 13.
    Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD, Storb R (1979) Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med 300:1068PubMedGoogle Scholar
  14. 14.
    Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, Rimm AA, Ringden O, Rozman C, Speck B et al (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75:555PubMedGoogle Scholar
  15. 15.
    van Besien K, Champlin IK, McCarthy P (2000) Allogeneic transplantation for low-grade lymphoma: long-term follow-up. J Clin Oncol 18:702PubMedGoogle Scholar
  16. 16.
    Michallet M, Michallet AS, Le QH, Bandini G, Rowlings PA, Deeg HJ, Gahrton G, Montserrat E, Nicolini F, Rozman C, Gratwohl A, Niederwieser D, Bredeson CN, Horowitz MM (2003) Conventional HLA-identical sibling bone marrow transplantation is able to cure chronic lymphocytic leukemia. A study from the EBMT and IBMTR Registries. American Society of Hematology, San Diego: Blood.Google Scholar
  17. 17.
    Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 86:2041PubMedGoogle Scholar
  18. 18.
    Slavin S, Naparstek E, Nagler A, Ackerstein A, Samuel S, Kapelushnik J, Brautbar C, Or R (1996) Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse after allogeneic bone marrow transplantation. Blood 87:2195PubMedGoogle Scholar
  19. 19.
    Peggs KS, Mackinnon S (2001) Cellular therapy: donor lymphocyte infusion. Curr Opin Hematol 8:349CrossRefPubMedGoogle Scholar
  20. 20.
    Kolb HJ, Schmid C, Barrett AJ, Schendel DJ (2004) Graft-versus-leukemia reactions in allogeneic chimeras. Blood 103:767CrossRefPubMedGoogle Scholar
  21. 21.
    Schetelig J, Thiede C, Bornhauser M, Schwerdtfeger R, Kiehl M, Beyer J, Sayer HG, Kroger N, Hensel M, Scheffold C, Held TK, Hoffken K, Ho AD, Kienast J, Neubauer A, Zander AR, Fauser AA, Ehninger G, Siegert W (2003) Evidence of a graft-versus-leukemia effect in chronic lymphocytic leukemia after reduced-intensity conditioning and allogeneic stem-cell transplantation: the Cooperative German Transplant Study Group. J Clin Oncol 21:2747CrossRefPubMedGoogle Scholar
  22. 22.
    Kroger N, Schwerdtfeger R, Kiehl M, Sayer HG, Renges H, Zabelina T, Fehse B, Togel F, Wittkowsky G, Kuse R, Zander AR (2002) Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood 100:755CrossRefPubMedGoogle Scholar
  23. 23.
    Maloney DG, Molina AJ, Sahebi F, Stockerl-Goldstein KE, Sandmaier BM, Bensinger W, Storer B, Hegenbart U, Somlo G, Chauncey T, Bruno B, Appelbaum FR, Blume KG, Forman SJ, McSweeney P, Storb R (2003) Allografting with nonmyeloablative conditioning following cytoreductive autografts for the treatment of patients with multiple myeloma. Blood 102:3447CrossRefPubMedGoogle Scholar
  24. 24.
    Khouri IF, Saliba RM, Giralt SA, Lee MS, Okoroji GJ, Hagemeister FB, Korbling M, Younes A, Ippoliti C, Gajewski JL, McLaughlin P, Anderlini P, Donato ML, Cabanillas FF, Champlin RE (2001) Nonablative allogeneic hematopoietic transplantation as adoptive immunotherapy for indolent lymphoma: low incidence of toxicity, acute graft-versus-host disease, and treatment-related mortality. Blood 98:3595CrossRefPubMedGoogle Scholar
  25. 25.
    Faulkner RD, Craddock C, Byrne JL, Mahendra P, Haynes AP, Prentice HG, Potter M, Pagliuca A, Ho A, Devereux S, McQuaker G, Mufti G, Yin JL, Russell NH (2004) BEAM-alemtuzumab reduced-intensity allogeneic stem cell transplantation for lymphoproliferative diseases: GVHD, toxicity, and survival in 65 patients. Blood 103:428CrossRefPubMedGoogle Scholar
  26. 26.
    Arnold R, Massenkeil G, Bornhauser M, Ehninger G, Beelen DW, Fauser AA, Hegenbart U, Hertenstein B, Ho AD, Knauf W, Kolb HJ, Kolbe K, Sayer HG, Schwerdtfeger R, Wandt H, Hoelzer D (2002) Nonmyeloablative stem cell transplantation in adults with high-risk ALL may be effective in early but not in advanced disease. Leukemia 16:2423CrossRefPubMedGoogle Scholar
  27. 27.
    van Rhee F, Lin F, Cullis JO, Spencer A, Cross NC, Chase A, Garicochea B, Bungey J, Barrett J, Goldman JM (1994) Relapse of chronic myeloid leukemia after allogeneic bone marrow transplant: the case for giving donor leukocyte transfusions before the onset of hematologic relapse. Blood 83:3377PubMedGoogle Scholar
  28. 28.
    Marks DI, Lush R, Cavenagh J, Milligan DW, Schey S, Parker A, Clark FJ, Hunt L, Yin J, Fuller S, Vandenberghe E, Marsh J, Littlewood T, Smith GM, Culligan D, Hunter A, Chopra R, Davies A, Towlson K, Williams CD (2002) The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 100:3108CrossRefPubMedGoogle Scholar
  29. 29.
    Kreuzer KA, Schmidt CA, Schetelig J, Held TK, Thiede C, Ehninger G, Siegert W (2002) Kinetics of stem cell engraftment and clearance of leukaemia cells after allogeneic stem cell transplantation with reduced intensity conditioning in chronic myeloid leukaemia. Eur J Haematol 69:7CrossRefPubMedGoogle Scholar
  30. 30.
    Ritgen M, Stilgenbauer S, Von Neuhoff N, Humpe A, Bruggemann M, Pott C, Raff T, Krober A, Bunjes D, Schlenk R, Schmitz N, Dohner H, Kneba M, Dreger P (2004) Graft-versus-leukemia activity may overcome therapeutic resistance of chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy chain gene status: implications of minimal residual disease measurement with quantitative PCR. Blood 104:2600–2602CrossRefPubMedGoogle Scholar
  31. 31.
    Mielcarek M, Leisenring W, Torok-Storb B, Storb R (2000) Graft-versus-host disease and donor-directed hemagglutinin titers after ABO-mismatched related and unrelated marrow allografts: evidence for a graft-versus-plasma cell effect. Blood 96:1150PubMedGoogle Scholar
  32. 32.
    Lee JH, Choi SJ, Kim S, Seol M, Kwon SW, Park CJ, Chi HS, Lee JS, Kim WK, Lee KH (2003) Changes of isoagglutinin titres after ABO-incompatible allogeneic stem cell transplantation. Br J Haematol 120:702CrossRefPubMedGoogle Scholar
  33. 33.
    Mutis T, Gillespie G, Schrama E, Falkenburg JH, Moss P, Goulmy E (1999) Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med 5:839CrossRefPubMedGoogle Scholar
  34. 34.
    Sayer HG, Kroger M, Beyer J, Kiehl M, Klein SA, Schaefer-Eckart K, Schwerdtfeger R, Siegert W, Runde V, Theuser C, Martin H, Schetelig J, Beelen DW, Fauser A, Kienast J, Hoffken K, Ehninger G, Bornhauser M (2003) Reduced intensity conditioning for allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia: disease status by marrow blasts is the strongest prognostic factor. Bone Marrow Transplant 31:1089CrossRefPubMedGoogle Scholar
  35. 35.
    Bornhauser M, Kiehl M, Siegert W, Schetelig J, Hertenstein B, Martin H, Schwerdtfeger R, Sayer HG, Runde V, Kroger N, Theuser C, Ehninger G (2001) Dose-reduced conditioning for allografting in 44 patients with chronic myeloid leukaemia: a retrospective analysis. Br J Haematol 115:119CrossRefPubMedGoogle Scholar
  36. 36.
    Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T, Hengartner H, Zinkernagel R (1998) Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med 187:1383CrossRefPubMedGoogle Scholar
  37. 37.
    Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677CrossRefPubMedGoogle Scholar
  38. 38.
    Corthay A, Lundin KU, Munthe LA, Froyland M, Gedde-Dahl T, Dembic Z, Bogen B (2004) Immunotherapy in multiple myeloma: Id-specific strategies suggested by studies in animal models. Cancer Immunol Immunother 53:759CrossRefPubMedGoogle Scholar
  39. 39.
    Bogen B (1996) Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur J Immunol 26:2671PubMedGoogle Scholar
  40. 40.
    Cao TM, Shizuru JA, Wong RM, Sheehan K, Laport GG, Stockerl-Goldstein KE, Johnston LJ, Stuart MJ, Brown JM, Grumet FC, Negrin RS, Lowsky R (2005) Engraftment and survival following reduced-intensity allogeneic peripheral blood hematopoietic cell transplantation is affected by CD8+ T-cell dose. Blood 105:2300–2306CrossRefPubMedGoogle Scholar
  41. 41.
    Barrett AJ, Ringden O, Zhang MJ, Bashey A, Cahn JY, Cairo MS, Gale RP, Gratwohl A, Locatelli F, Martino R, Schultz KR, Tiberghien P (2000) Effect of nucleated marrow cell dose on relapse and survival in identical twin bone marrow transplants for leukemia. Blood 95:3323PubMedGoogle Scholar
  42. 42.
    Mackinnon S, Papadopoulos EB, Carabasi MH, Reich L, Collins NH, Boulad F, Castro-Malaspina H, Childs BH, Gillio AP, Kernan NA et al (1995) Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 86:1261PubMedGoogle Scholar
  43. 43.
    Posthuma EF, Marijt EW, Barge RM, van Soest RA, Baas IO, Starrenburg CW, van Zelderen-Bhola SL, Fibbe WE, Smit WM, Willemze R, Falkenburg JH (2004) Alpha-interferon with very-low-dose donor lymphocyte infusion for hematologic or cytogenetic relapse of chronic myeloid leukemia induces rapid and durable complete remissions and is associated with acceptable graft-versus-host disease. Biol Blood Marrow Transplant 10:204CrossRefPubMedGoogle Scholar
  44. 44.
    Schmid C, Schleuning M, Aschan J, Ringden O, Hahn J, Holler E, Hegenbart U, Niederwieser D, Dugas M, Ledderose G, Kolb HJ (2004) Low-dose ARAC, donor cells, and GM-CSF for treatment of recurrent acute myeloid leukemia after allogeneic stem cell transplantation. Leukemia 18:1430CrossRefPubMedGoogle Scholar
  45. 45.
    Vereecque R, Saudemont A, Quesnel B (2004) Cytosine arabinoside induces costimulatory molecule expression in acute myeloid leukemia cells. Leukemia 18:1223CrossRefPubMedGoogle Scholar
  46. 46.
    Brouwer RE, van der Heiden P, Schreuder GM, Mulder A, Datema G, Anholts JD, Willemze R, Claas FH, Falkenburg JH (2002) Loss or downregulation of HLA class I expression at the allelic level in acute leukemia is infrequent but functionally relevant, and can be restored by interferon. Hum Immunol 63:200CrossRefPubMedGoogle Scholar
  47. 47.
    Anderton SM, Wraith DC (2002) Selection and fine-tuning of the autoimmune T-cell repertoire. Nat Rev Immunol 2:487CrossRefPubMedGoogle Scholar
  48. 48.
    Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850CrossRefPubMedGoogle Scholar
  49. 49.
    Bethge WA, Hegenbart U, Stuart MJ, Storer BE, Maris MB, Flowers ME, Maloney DG, Chauncey T, Bruno B, Agura E, Forman SJ, Blume KG, Niederwieser D, Storb R, Sandmaier BM (2004) Adoptive immunotherapy with donor lymphocyte infusions after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Blood 103:790CrossRefPubMedGoogle Scholar
  50. 50.
    Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A 99:16168CrossRefPubMedGoogle Scholar
  51. 51.
    Ossendorp F, Eggers M, Neisig A, Ruppert T, Groettrup M, Sijts A, Mengede E, Kloetzel PM, Neefjes J, Koszinowski U, Melief C (1996) A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5:115CrossRefPubMedGoogle Scholar
  52. 52.
    Kaklamanis L, Gatter KC, Hill AB, Mortensen N, Harris AL, Krausa P, McMichael A, Bodmer JG, Bodmer WF (1992) Loss of HLA class-I alleles, heavy chains and beta 2-microglobulin in colorectal cancer. Int J Cancer 51:379PubMedGoogle Scholar
  53. 53.
    Dermime S, Mavroudis D, Jiang YZ, Hensel N, Molldrem J, Barrett AJ (1997) Immune escape from a graft-versus-leukemia effect may play a role in the relapse of myeloid leukemias following allogeneic bone marrow transplantation. Bone Marrow Transplant 19:989CrossRefPubMedGoogle Scholar
  54. 54.
    Brouwer RE, Hoefnagel J, Borger van Der Burg B, Jedema I, Zwinderman KH, Starrenburg IC, Kluin-Nelemans HC, Barge RM, Willemze R, and Falkenburg JH (2001) Expression of co-stimulatory and adhesion molecules and chemokine or apoptosis receptors on acute myeloid leukaemia: high CD40 and CD11a expression correlates with poor prognosis. Br J Haematol 115:298CrossRefPubMedGoogle Scholar
  55. 55.
    MacFarlane M, Harper N, Snowden RT, Dyer MJ, Barnett GA, Pringle JH, Cohen GM (2002) Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia. Oncogene 21:6809CrossRefPubMedGoogle Scholar
  56. 56.
    Uno K, Inukai T, Kayagaki N, Goi K, Sato H, Nemoto A, Takahashi K, Kagami K, Yamaguchi N, Yagita H, Okumura K, Koyama-Okazaki T, Suzuki T, Sugita K, and Nakazawa S (2003) TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome-positive leukemia cells. Blood 101:3658CrossRefPubMedGoogle Scholar
  57. 57.
    Hirano N, Takahashi T, Ohtake S, Hirashima K, Emi N, Saito K, Hirano M, Shinohara K, Takeuchi M, Taketazu F, Tsunoda S, Ogura M, Omine M, Saito T, Yazaki Y, Ueda R, Hirai H (1996) Expression of costimulatory molecules in human leukemias. Leukemia 10:1168PubMedGoogle Scholar
  58. 58.
    Trentin L, Perin A, Siviero M, Piazza F, Facco M, Gurrieri C, Galvan S, Adami F, Agostini C, Pizzolo G, Zambello R, and Semenzato G (2000) B7 costimulatory molecules from malignant cells in patients with b-cell chronic lymphoproliferative disorders trigger t-cell proliferation. Cancer 89:1259CrossRefPubMedGoogle Scholar
  59. 59.
    Choudhury A, Gajewski JL, Liang JC, Popat U, Claxton DF, Kliche KO, Andreeff M, Champlin RE (1997) Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 89:1133PubMedGoogle Scholar
  60. 60.
    Smit WM, Rijnbeek M, van Bergen CA, de Paus RA, Vervenne HA, van de Keur M, Willemze R, Falkenburg JH (1997) Generation of dendritic cells expressing bcr-abl from CD34-positive chronic myeloid leukemia precursor cells. Hum Immunol 53:216CrossRefPubMedGoogle Scholar
  61. 61.
    Eibl B, Ebner S, Duba C, Bock G, Romani N, Erdel M, Gachter A, Niederwieser D, Schuler G (1997) Dendritic cells generated from blood precursors of chronic myelogenous leukemia patients carry the Philadelphia translocation and can induce a CML-specific primary cytotoxic T-cell response. Genes Chromosomes Cancer 20:215CrossRefGoogle Scholar
  62. 62.
    Harrison BD, Adams JA, Briggs M, Brereton ML, Yin JA (2001) Stimulation of autologous proliferative and cytotoxic T-cell responses by “leukemic dendritic cells” derived from blast cells in acute myeloid leukemia. Blood 97:2764CrossRefPubMedGoogle Scholar
  63. 63.
    Voutsadakis IA (2003) NK cells in allogeneic bone marrow transplantation. Cancer Immunol Immunother 52:525CrossRefPubMedGoogle Scholar
  64. 64.
    Goulmy E, Termijtelen A, Bradley BA, van Rood JJ (1976) Alloimmunity to human H-Y. Lancet 2:1206CrossRefGoogle Scholar
  65. 65.
    Voogt PJ, Fibbe WE, Marijt WA, Goulmy E, Veenhof WF, Hamilton M, Brand A, Zwann FE, Willemze R, van Rood JJ et al (1990) Rejection of bone-marrow graft by recipient-derived cytotoxic T lymphocytes against minor histocompatibility antigens. Lancet 335:131CrossRefPubMedGoogle Scholar
  66. 66.
    Goulmy E, Gratama JW, Blokland E, Zwaan FE, van Rood JJ (1983) A minor transplantation antigen detected by MHC-restricted cytotoxic T lymphocytes during graft-versus-host disease. Nature 302:159CrossRefPubMedGoogle Scholar
  67. 67.
    den Haan JM, Sherman NE, Blokland E, Huczko E, Koning F, Drijfhout JW, Skipper J, Shabanowitz J, Hunt DF, Engelhard VH et al (1995) Identification of a graft versus host disease-associated human minor histocompatibility antigen. Science 268:1476PubMedGoogle Scholar
  68. 68.
    Wang W, Meadows LR, den Haan JM, Sherman NE, Chen Y, Blokland E, Shabanowitz J, Agulnik AI, Hendrickson RC, Bishop CE et al (1995) Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science 269:1588PubMedGoogle Scholar
  69. 69.
    Skipper JC, Hendrickson RC, Gulden PH, Brichard V, Van Pel A, Chen Y, Shabanowitz J, Wolfel T, Slingluff CL, Jr., Boon T, Hunt DF, and Engelhard VH (1996) An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 183:527CrossRefPubMedGoogle Scholar
  70. 70.
    den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, Bishop TL, Reinhardus C, Shabanowitz J, Offringa R, Hunt DF, Engelhard VH, Goulmy E (1998) The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 279:1054CrossRefPubMedGoogle Scholar
  71. 71.
    Pierce RA, Field ED, den Haan JM, Caldwell JA, White FM, Marto JA, Wang W, Frost LM, Blokland E, Reinhardus C, Shabanowitz J, Hunt DF, Goulmy E, Engelhard VH (1999) Cutting edge: the HLA-A*0101-restricted HY minor histocompatibility antigen originates from DFFRY and contains a cysteinylated cysteine residue as identified by a novel mass spectrometric technique. J Immunol 163:6360PubMedGoogle Scholar
  72. 72.
    Kuttler C, Nussbaum AK, Dick TP, Rammensee HG, Schild H, Hadeler KP (2000) An algorithm for the prediction of proteasomal cleavages. J Mol Biol 298:417CrossRefPubMedGoogle Scholar
  73. 73.
    Pierce RA, Field ED, Mutis T, Golovina TN, Von Kap-Herr C, Wilke M, Pool J, Shabanowitz J, Pettenati MJ, Eisenlohr LC, Hunt DF, Goulmy E, Engelhard VH (2001) The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein. J Immunol 167:3223PubMedGoogle Scholar
  74. 74.
    Brickner AG, Warren EH, Caldwell JA, Akatsuka Y, Golovina TN, Zarling AL, Shabanowitz J, Eisenlohr LC, Hunt DF, Engelhard VH, Riddell SR (2001) The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing. J Exp Med 193:195CrossRefPubMedGoogle Scholar
  75. 75.
    Spierings E, Brickner AG, Caldwell JA, Zegveld S, Tatsis N, Blokland E, Pool J, Pierce RA, Mollah S, Shabanowitz J, Eisenlohr LC, van Veelen P, Ossendorp F, Hunt DF, Goulmy E, Engelhard VH (2003) The minor histocompatibility antigen HA-3 arises from differential proteasome-mediated cleavage of the lymphoid blast crisis (Lbc) oncoprotein. Blood 102:621CrossRefPubMedGoogle Scholar
  76. 76.
    Vogt MH, Goulmy E, Kloosterboer FM, Blokland E, de Paus RA, Willemze R, Falkenburg JH (2000) UTY gene codes for an HLA-B60-restricted human male-specific minor histocompatibility antigen involved in stem cell graft rejection: characterization of the critical polymorphic amino acid residues for T-cell recognition. Blood 96:3126PubMedGoogle Scholar
  77. 77.
    Warren EH, Greenberg PD, Riddell SR (1998) Cytotoxic T-lymphocyte-defined human minor histocompatibility antigens with a restricted tissue distribution. Blood 91:2197PubMedGoogle Scholar
  78. 78.
    Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261PubMedGoogle Scholar
  79. 79.
    Meadows L, Wang W, den Haan JM, Blokland E, Reinhardus C, Drijfhout JW, Shabanowitz J, Pierce R, Agulnik AI, Bishop CE, Hunt DF, Goulmy E, Engelhard VH (1997) The HLA-A*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T cell recognition. Immunity 6:273CrossRefPubMedGoogle Scholar
  80. 80.
    Van Pel A, van der Bruggen P, Coulie PG, Brichard VG, Lethe B, van den Eynde B, Uyttenhove C, Renauld JC, Boon T (1995) Genes coding for tumor antigens recognized by cytolytic T lymphocytes. Immunol Rev 145:229PubMedGoogle Scholar
  81. 81.
    Dolstra H, Fredrix H, Maas F, Coulie PG, Brasseur F, Mensink E, Adema GJ, de Witte TM, Figdor CG, van de Wiel-van Kemenade E (1999) A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia. J Exp Med 189:301CrossRefPubMedGoogle Scholar
  82. 82.
    Warren EH, Gavin MA, Simpson E, Chandler P, Page DC, Disteche C, Stankey KA, Greenberg PD, Riddell SR (2000) The human UTY gene encodes a novel HLA-B8-restricted H-Y antigen. J Immunol 164:2807PubMedGoogle Scholar
  83. 83.
    Warren EH, Otterud BE, Linterman RW, Brickner AG, Engelhard VH, Leppert MF, Martin PJ, Riddell SR (2002) Feasibility of using genetic linkage analysis to identify the genes encoding T cell-defined minor histocompatibility antigens. Tissue Antigens 59:293CrossRefPubMedGoogle Scholar
  84. 84.
    Dickinson AM, Wang XN, Sviland L, Vyth-Dreese FA, Jackson GH, Schumacher TN, Haanen JB, Mutis T, Goulmy E (2002) In situ dissection of the graft-versus-host activities of cytotoxic T cells specific for minor histocompatibility antigens. Nat Med 8:410CrossRefPubMedGoogle Scholar
  85. 85.
    Marijt WA, Heemskerk MH, Kloosterboer FM, Goulmy E, Kester MG, van der Hoorn MA, van Luxemburg-Heys SA, Hoogeboom M, Mutis T, Drijfhout JW, van Rood JJ, Willemze R, Falkenburg JH (2003) Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci U S A 100:2742CrossRefPubMedGoogle Scholar
  86. 86.
    Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg JH, Vossen J, Gratwohl A, Vogelsang GB, van Houwelingen HC, van Rood JJ (1996) Mismatches of minor histocompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 334:281CrossRefPubMedGoogle Scholar
  87. 87.
    Tseng LH, Lin MT, Hansen JA, Gooley T, Pei J, Smith AG, Martin EG, Petersdorf EW, Martin PJ (1999) Correlation between disparity for the minor histocompatibility antigen HA-1 and the development of acute graft-versus-host disease after allogeneic marrow transplantation. Blood 94:2911PubMedGoogle Scholar
  88. 88.
    Murata M, Emi N, Hirabayashi N, Hamaguchi M, Goto S, Wakita A, Tanimoto M, Saito H, Kodera Y, Morishita Y (2000) No significant association between HA-1 incompatibility and incidence of acute graft-versus-host disease after HLA-identical sibling bone marrow transplantation in Japanese patients. Int J Hematol 72:371PubMedGoogle Scholar
  89. 89.
    Lin MT, Gooley T, Hansen JA, Tseng LH, Martin EG, Singleton K, Smith AG, Mickelson E, Petersdorf EW, Martin PJ (2001) Absence of statistically significant correlation between disparity for the minor histocompatibility antigen-HA-1 and outcome after allogeneic hematopoietic cell transplantation. Blood 98:3172CrossRefPubMedGoogle Scholar
  90. 90.
    Kloosterboer FM, van Luxemburg-Heijs SA, van Soest RA, Barbui AM, van Egmond HM, Strijbosch MP, Kester MG, Marijt WA, Goulmy E, Willemze R, Falkenburg JH (2004) Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia 18:798CrossRefPubMedGoogle Scholar
  91. 91.
    Randolph SS, Gooley TA, Warren EH, Appelbaum FR, Riddell SR (2004) Female donors contribute to a selective graft-versus-leukemia effect in male recipients of HLA-matched, related hematopoietic stem cell transplants. Blood 103:347CrossRefPubMedGoogle Scholar
  92. 92.
    Gratwohl A, Hermans J, Niederwieser D, van Biezen A, van Houwelingen HC, Apperley J (2001) Female donors influence transplant-related mortality and relapse incidence in male recipients of sibling blood and marrow transplants. Hematol J 2:363CrossRefPubMedGoogle Scholar
  93. 93.
    Bories D, Raynal MC, Solomon DH, Darzynkiewicz Z, Cayre YE (1989) Down-regulation of a serine protease, myeloblastin, causes growth arrest and differentiation of promyelocytic leukemia cells. Cell 59:959CrossRefPubMedGoogle Scholar
  94. 94.
    Molldrem J, Dermime S, Parker K, Jiang YZ, Mavroudis D, Hensel N, Fukushima P, Barrett AJ (1996) Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 88:2450PubMedGoogle Scholar
  95. 95.
    Molldrem JJ, Clave E, Jiang YZ, Mavroudis D, Raptis A, Hensel N, Agarwala V, Barrett AJ (1997) Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 90:2529PubMedGoogle Scholar
  96. 96.
    Molldrem JJ, Lee PP, Wang C, Champlin RE, Davis MM (1999) A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia. Cancer Res 59:2675PubMedGoogle Scholar
  97. 97.
    Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE, Davis MM (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6:1018CrossRefPubMedGoogle Scholar
  98. 98.
    Rezvani K, Grube M, Brenchley JM, Sconocchia G, Fujiwara H, Price DA, Gostick E, Yamada K, Melenhorst J, Childs R, Hensel N, Douek DC, Barrett AJ (2003) Functional leukemia-associated antigen-specific memory CD8+ T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood 102:2892CrossRefPubMedGoogle Scholar
  99. 99.
    Molldrem JJ, Lee PP, Kant S, Wieder E, Jiang W, Lu S, Wang C, Davis MM (2003) Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 111:639CrossRefPubMedGoogle Scholar
  100. 100.
    Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95:286PubMedGoogle Scholar
  101. 101.
    Bellantuono I, Gao L, Parry S, Marley S, Dazzi F, Apperley J, Goldman JM, Stauss HJ (2002) Two distinct HLA-A0201-presented epitopes of the Wilms tumor antigen 1 can function as targets for leukemia-reactive CTL. Blood 100:3835CrossRefPubMedGoogle Scholar
  102. 102.
    Knights AJ, Muller L, Pawelec G (2002) Immunogenicity of WT-1 peptides. Cancer Immunol Immunother 51:349CrossRefPubMedGoogle Scholar
  103. 103.
    Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U (2004) Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 18:165CrossRefPubMedGoogle Scholar
  104. 104.
    Altieri DC (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer 3:46CrossRefPubMedGoogle Scholar
  105. 105.
    Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, Montagna L, Piccoli P, Chilosi M, Caligaris-Cappio F (2001) Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 97:2777CrossRefPubMedGoogle Scholar
  106. 106.
    Siegel S, Wagner A, Schmitz N, Zeis M (2003) Induction of antitumour immunity using survivin peptide-pulsed dendritic cells in a murine lymphoma model. Br J Haematol 122:911CrossRefPubMedGoogle Scholar
  107. 107.
    Zeis M, Siegel S, Wagner A, Schmitz M, Marget M, Kuhl-Burmeister R, Adamzik I, Kabelitz D, Dreger P, Schmitz N, Heiser A (2003) Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 170:5391PubMedGoogle Scholar
  108. 108.
    Schmidt SM, Schag K, Muller MR, Weck MM, Appel S, Kanz L, Grunebach F, Brossart P (2003) Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 102:571PubMedGoogle Scholar
  109. 109.
    Andersen MH, Pedersen LO, Becker JC, Straten PT (2001) Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients. Cancer Res 61:869PubMedGoogle Scholar
  110. 110.
    Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R (1992) Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med 327:1209PubMedGoogle Scholar
  111. 111.
    Hsu FJ, Caspar CB, Czerwinski D, Kwak LW, Liles TM, Syrengelas A, Taidi-Laskowski B, Levy R (1997) Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma–long-term results of a clinical trial. Blood 89:3129PubMedGoogle Scholar
  112. 112.
    Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R, Caspar CB, Okada CY, van Beckhoven A, Liles TM, Engleman EG, Levy R (2002) Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99:1517PubMedGoogle Scholar
  113. 113.
    Bendandi M, Gocke CD, Kobrin CB, Benko FA, Sternas LA, Pennington R, Watson TM, Reynolds CW, Gause BL, Duffey PL, Jaffe ES, Creekmore SP, Longo DL, Kwak LW (1999) Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma. Nat Med 5:1171CrossRefPubMedGoogle Scholar
  114. 114.
    Kwak LW, Taub DD, Duffey PL, Bensinger WI, Bryant EM, Reynolds CW, Longo DL (1995) Transfer of myeloma idiotype-specific immunity from an actively immunised marrow donor. Lancet 345:1016CrossRefPubMedGoogle Scholar
  115. 115.
    Kwak LW, Pennington R, Longo DL (1996) Active immunization of murine allogeneic bone marrow transplant donors with B-cell tumor-derived idiotype: a strategy for enhancing the specific antitumor effect of marrow grafts. Blood 87:3053PubMedGoogle Scholar
  116. 116.
    Li Y, Bendandi M, Deng Y, Dunbar C, Munshi N, Jagannath S, Kwak LW, Lyerly HK (2000) Tumor-specific recognition of human myeloma cells by idiotype-induced CD8(+) T cells. Blood 96:2828PubMedGoogle Scholar
  117. 117.
    Kwak LW, Neelapu SS, Bishop MR (2004) Adoptive immunotherapy with antigen-specific T cells in myeloma: a model of tumor-specific donor lymphocyte infusion. Semin Oncol 31:37Google Scholar
  118. 118.
    Cabrera R, Diaz-Espada F, Barrios Y, Briz M, Fores R, Barbolla L, Sanjuan I, Regidor C, Penalver FJ, Fernandez MN (2000) Infusion of lymphocytes obtained from a donor immunised with the paraprotein idiotype as a treatment in a relapsed myeloma. Bone Marrow Transplant 25:1105CrossRefPubMedGoogle Scholar
  119. 119.
    Trojan A, Schultze JL, Witzens M, Vonderheide RH, Ladetto M, Donovan JW, Gribben JG (2000) Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nat Med 6:667CrossRefPubMedGoogle Scholar
  120. 120.
    Widhopf GF II, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ (2004) Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 104:2499CrossRefPubMedGoogle Scholar
  121. 121.
    Chen W, Peace DJ, Rovira DK, You SG, Cheever MA (1992) T-cell immunity to the joining region of p210BCR-ABL protein. Proc Natl Acad Sci U S A 89:1468PubMedGoogle Scholar
  122. 122.
    Bocchia M, Wentworth PA, Southwood S, Sidney J, McGraw K, Scheinberg DA, Sette A (1995) Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood 85:2680PubMedGoogle Scholar
  123. 123.
    Bocchia M, Korontsvit T, Xu Q, Mackinnon S, Yang SY, Sette A, Scheinberg DA (1996) Specific human cellular immunity to bcr-abl oncogene-derived peptides. Blood 87:3587PubMedGoogle Scholar
  124. 124.
    Yotnda P, Firat H, Garcia-Pons F, Garcia Z, Gourru G, Vernant JP, Lemonnier FA, Leblond V, Langlade-Demoyen P (1998) Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 101:2290PubMedGoogle Scholar
  125. 125.
    Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR, Rojas J, Bourdon A, Bonner PL, Wang L, Christmas SE, Travers PJ, Creaser CS, Rees RC, Madrigal JA (2001) Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood 98:2887CrossRefPubMedGoogle Scholar
  126. 126.
    Mannering SI, McKenzie JL, Fearnley DB, Hart DN (1997) HLA-DR1-restricted bcr-abl (b3a2)-specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigen-presenting cells exposed to b3a2 containing cell lysates. Blood 90:290PubMedGoogle Scholar
  127. 127.
    Yasukawa M, Ohminami H, Kaneko S, Yakushijin Y, Nishimura Y, Inokuchi K, Miyakuni T, Nakao S, Kishi K, Kubonishi I, Dan K, Fujita S (1998) CD4(+) cytotoxic T-cell clones specific for bcr-abl b3a2 fusion peptide augment colony formation by chronic myelogenous leukemia cells in a b3a2-specific and HLA-DR-restricted manner. Blood 92:3355PubMedGoogle Scholar
  128. 128.
    Wagner WM, Ouyang Q, Pawelec G (2003) The abl/bcr gene product as a novel leukemia-specific antigen: peptides spanning the fusion region of abl/bcr can be recognized by both CD4+ and CD8+ T lymphocytes. Cancer Immunol Immunother 52:89PubMedGoogle Scholar
  129. 129.
    Walker LS, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2:11CrossRefPubMedGoogle Scholar
  130. 130.
    Posthuma EF, Falkenburg JH, Apperley JF, Gratwohl A, Roosnek E, Hertenstein B, Schipper RF, Schreuder GM, D’Amaro J, Oudshoorn M, van Biezen JH, Hermans J, Willemze R, Niederwieser D (1999) HLA-B8 and HLA-A3 coexpressed with HLA-B8 are associated with a reduced risk of the development of chronic myeloid leukemia. The Chronic Leukemia Working Party of the EBMT. Blood 93:3863PubMedGoogle Scholar
  131. 131.
    Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038CrossRefPubMedGoogle Scholar
  132. 132.
    Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, Brenner MK, Heslop HE (1995) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345:9CrossRefPubMedGoogle Scholar
  133. 133.
    Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549PubMedGoogle Scholar
  134. 134.
    Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA, Brenner MK, Rooney CM (1996) Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 2:551CrossRefPubMedGoogle Scholar
  135. 135.
    Rooney CM, Aguilar LK, Huls MH, Brenner MK, Heslop HE (2001) Adoptive immunotherapy of EBV-associated malignancies with EBV-specific cytotoxic T-cell lines. Curr Top Microbiol Immunol 258:221PubMedGoogle Scholar
  136. 136.
    Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1375CrossRefPubMedGoogle Scholar
  137. 137.
    Falkenburg JH, Wafelman AR, Joosten P, Smit WM, van Bergen CA, Bongaerts R, Lurvink E, van der Hoorn M, Kluck P, Landegent JE, Kluin-Nelemans HC, Fibbe WE, Willemze R (1999) Complete remission of accelerated phase chronic myeloid leukemia by treatment with leukemia-reactive cytotoxic T lymphocytes. Blood 94:1201PubMedGoogle Scholar
  138. 138.
    Buhmann R, Nolte A, Westhaus D, Emmerich B, Hallek M (1999) CD40-activated B-cell chronic lymphocytic leukemia cells for tumor immunotherapy: stimulation of allogeneic versus autologous T cells generates different types of effector cells. Blood 93:1992PubMedGoogle Scholar
  139. 139.
    Schultze JL, Cardoso AA, Freeman GJ, Seamon MJ, Daley J, Pinkus GS, Gribben JG, Nadler LM (1995) Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their tumor immunogenicity. Proc Natl Acad Sci U S A 92:8200PubMedGoogle Scholar
  140. 140.
    Mohty M, Isnardon D, Charbonnier A, Lafage-Pochitaloff M, Merlin M, Sainty D, Olive D, Gaugler B (2002) Generation of potent T(h)1 responses from patients with lymphoid malignancies after differentiation of B lymphocytes into dendritic-like cells. Int Immunol 14:741CrossRefPubMedGoogle Scholar
  141. 141.
    Hoogendoorn M, Wolbers JO, Smit WM, Schaafsma MR, Barge RM, Willemze R, Falkenburg JH (2004) Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy. Leukemia 18:1278CrossRefPubMedGoogle Scholar
  142. 142.
    Muller MR, Tsakou G, Grunebach F, Schmidt SM, Brossart P (2004) Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood 103:1763PubMedGoogle Scholar
  143. 143.
    Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E (1999) Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens. Blood 93:2336PubMedGoogle Scholar
  144. 144.
    Nijmeijer BA, Willemze R, Falkenburg JH (2002) An animal model for human cellular immunotherapy: specific eradication of human acute lymphoblastic leukemia by cytotoxic T lymphocytes in NOD/scid mice. Blood 100:654CrossRefPubMedGoogle Scholar
  145. 145.
    Bonnet D, Warren EH, Greenberg PD, Dick JE, Riddell SR (1999) CD8(+) minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc Natl Acad Sci U S A 96:8639CrossRefPubMedGoogle Scholar
  146. 146.
    Fontaine P, Roy-Proulx G, Knafo L, Baron C, Roy DC, Perreault C (2001) Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Nat Med 7:789CrossRefPubMedGoogle Scholar
  147. 147.
    Rosenberg SA, Dudley ME (2004) Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci U S A 101(Suppl 2):14639CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Johannes Schetelig
    • 1
  • Alexander Kiani
    • 1
  • Marc Schmitz
    • 2
  • Gerhard Ehninger
    • 1
  • Martin Bornhäuser
    • 1
  1. 1.Medizinische Klinik und Poliklinik IUniversitätsklinikum Carl Gustav CarusDresdenGermany
  2. 2.Institut für ImmunologieTechnische Universität DresdenDresdenGermany

Personalised recommendations