Cancer Immunology, Immunotherapy

, Volume 54, Issue 11, pp 1127–1136 | Cite as

Tumor counterattack: fact or fiction?

Symposium Paper


Cancer development relies on a variety of mechanisms that facilitate tumor growth despite the presence of a functioning immune system. Understanding these mechanisms may foster novel therapeutic approaches for oncology and organ transplantation. By expression of the apoptosis-inducing protein CD95L (FasL, APO-1L, CD178), tumors may eliminate tumor-infiltrating lymphocytes and suppress anti-tumor immune responses, a phenomenon called “tumor counterattack”. On the one hand, preliminary evidence of tumor counterattack in human tumors exists, and CD95L expression can prevent T-cell responses in vitro. On the other hand, CD95L-expressing tumors are rapidly rejected and induce inflammation in mice. Here, we summarize and discuss the consequences of CD95L expression of tumor cells and its contribution to immune escape.


Apoptosis Immune escape Neutrophils Cancer 


  1. 1.
    Alderson MR, Tough TW, Braddy S, Davis-Smith T, Roux E, Schooley K, Miller RE, Lynch DH (1994) Regulation of apoptosis and T cell activation by Fas-specific mAb. Int Immunol 6:1799–1806PubMedGoogle Scholar
  2. 2.
    Allison J, Georgiou HM, Strasser A, Vaux DL (1997) Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci U S A 94:3943–3947CrossRefPubMedGoogle Scholar
  3. 3.
    Aoki K, Kurooka M, Chen JJ, Petryniak J, Nabel EG, Nabel GJ (2001) Extracellular matrix interacts with soluble CD95L: retention and enhancement of cytotoxicity. Nat Immunol 2:333–337CrossRefPubMedGoogle Scholar
  4. 4.
    Arai H, Chan SY, Bishop DK, Nabel GJ (1997) Inhibition of the alloantibody response by CD95 ligand. Nat Med 3:843–848CrossRefPubMedGoogle Scholar
  5. 5.
    Arai H, Gordon D, Nabel EG, Nabel GJ (1997) Gene transfer of Fas ligand induces tumor regression in vivo. Proc Natl Acad Sci U S A 94:13862–13867CrossRefPubMedGoogle Scholar
  6. 6.
    Askenasy N, Yolcu ES, Wang Z, Shirwan H (2003) Display of Fas ligand protein on cardiac vasculature as a novel means of regulating allograft rejection. Circulation 107:1525–1531CrossRefPubMedGoogle Scholar
  7. 7.
    Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME (2004) CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. Embo J 23:3175–3185CrossRefPubMedGoogle Scholar
  8. 8.
    Behrens CK, Igney FH,Arnold B, Moller P, Krammer PH (2001) CD95 ligand-expressing tumors are rejected in anti-tumor TCR transgenic perforin knockout mice. J Immunol 166:3240–3247PubMedGoogle Scholar
  9. 9.
    Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC (1995) A role for CD95 ligand in preventing graft rejection. Nature 377:630–632CrossRefPubMedGoogle Scholar
  10. 10.
    Bennett MW, O’Connell J, O’Sullivan GC, Roche D, Brady C, Kelly J, Collins JK, Shanahan F (1999) Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer. Gut 44:156–162PubMedGoogle Scholar
  11. 11.
    Bennett MW, O’Connell J, O’Sullivan GC, Brady C, Roche D, Collins JK, Shanahan F (1998) The Fas counterattack in vivo: apoptotic depletion of tumor- infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol 160:5669–5675PubMedGoogle Scholar
  12. 12.
    Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5:90–96CrossRefPubMedGoogle Scholar
  13. 13.
    Buonocore S, Van Meirvenne S, Demoor F, Paulart F, Thielemans K, Goldman M, Flamand V (2003) Dendritic cells overexpressing CD95 (Fas) ligand elicit vigorous allospecific T-cell responses in vivo. Blood 101:1469–1476CrossRefPubMedGoogle Scholar
  14. 14.
    Chang MK, Binder CJ, Miller YI, Subbanagounder G, Silverman GJ, Berliner JA, Witztum JL (2004) Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med 200:1359–1370CrossRefPubMedGoogle Scholar
  15. 15.
    Chen JJ, Sun Y, Nabel GJ (1998) Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 282:1714–1717CrossRefPubMedGoogle Scholar
  16. 16.
    Chen YL, Chen SH, Wang JY, Yang BC (2003) Fas ligand on tumor cells mediates inactivation of neutrophils. J Immunol 171:1183–1191PubMedGoogle Scholar
  17. 17.
    Choi C, Park JY, Lee J, Lim JH, Shin EC, Ahn YS, Kim CH, Kim SJ, Kim JD, Choi IS, Choi IH (1999) Fas ligand and Fas are expressed constitutively in human astrocytes and the expression increases with IL-1, IL-6, TNF-alpha, or IFN-gamma. J Immunol 162:1889–1895PubMedGoogle Scholar
  18. 18.
    Desbarats J, Birge RB, Mimouni-Rongy M, Weinstein DE, Palerme JS, Newell MK (2003) Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat Cell Biol 5:118–125CrossRefPubMedGoogle Scholar
  19. 19.
    Deveraux QL, Reed JC (1999) IAP family proteins–suppressors of apoptosis. Genes Dev 13:239–252PubMedGoogle Scholar
  20. 20.
    Dhein J, Walczak H, Bäumler C, Debatin KM, Krammer PH (1995) Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373:438–441CrossRefPubMedGoogle Scholar
  21. 21.
    Drozdzik M, Qian C, Lasarte JJ, Bilbao R, Prieto J (1998) Antitumor effect of allogenic fibroblasts engineered to express Fas ligand (FasL). Gene Ther 5:1622–1630CrossRefPubMedGoogle Scholar
  22. 22.
    Dulat HJ, von Grumbkow C, Baars W, Schroder N, Wonigeit K, Schwinzer R (2001) Down-regulation of human alloimmune responses by genetically engineered expression of CD95 ligand on stimulatory and target cells. Eur J Immunol 31:2217–2226CrossRefPubMedGoogle Scholar
  23. 23.
    Eichhorst ST, Muller M, Li-Weber M, Schulze-Bergkamen H, Angel P, Krammer PH (2000) A novel AP-1 element in the CD95 ligand promoter is required for induction of apoptosis in hepatocellular carcinoma cells upon treatment with anticancer drugs. Mol Cell Biol 20:7826–7837CrossRefPubMedGoogle Scholar
  24. 24.
    Fadok VA, Bratton DL, Henson PM (2001) Phagocyte receptors for apoptotic cells: recognition, uptake, and consequences. J Clin Invest 108:957–962CrossRefPubMedGoogle Scholar
  25. 25.
    French LE, Hahne M, Viard I, Radlgruber G, Zanone R, Becker K, Muller C, Tschopp J (1996) Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol 133:335–343CrossRefPubMedGoogle Scholar
  26. 26.
    Friesen C, Fulda S, Debatin KM (1999) Induction of CD95 ligand and apoptosis by doxorubicin is modulated by the redox state in chemosensitive- and drug-resistant tumor cells. Cell Death Differ 6:471–480CrossRefPubMedGoogle Scholar
  27. 27.
    Friesen C, Herr I, Krammer PH, Debatin KM (1996) Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug- induced apoptosis in leukemia cells. Nat Med 2:574–577CrossRefPubMedGoogle Scholar
  28. 28.
    Fulda S, Scaffidi C, Pietsch T, Krammer PH, Peter ME, Debatin KM (1998) Activation of the CD95 (APO-1/Fas) pathway in drug- and gamma- irradiation-induced apoptosis of brain tumor cells. Cell Death Differ 5:884–893CrossRefPubMedGoogle Scholar
  29. 29.
    Gao Y, Herndon JM, Zhang H, Griffith TS, Ferguson TA (1998) Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis. J Exp Med 188:887–896CrossRefPubMedGoogle Scholar
  30. 30.
    Gratas C, Tohma Y, Van Meir EG, Klein M, Tenan M, Ishii N, Tachibana O, Kleihues P, Ohgaki H (1997) Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol 7:863–869PubMedGoogle Scholar
  31. 31.
    Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192PubMedGoogle Scholar
  32. 32.
    Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA (1996) CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5:7–16CrossRefPubMedGoogle Scholar
  33. 33.
    Gutierrez-Steil C, Wrone-Smith T, Sun X, Krueger JG, Coven T, Nickoloff BJ (1998) Sunlight-induced basal cell carcinoma tumor cells and ultraviolet-B- irradiated psoriatic plaques express Fas ligand (CD95L). J Clin Invest 101:33–39PubMedGoogle Scholar
  34. 34.
    Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363–1366PubMedGoogle Scholar
  35. 35.
    Hohlbaum AM, Gregory MS, Ju ST, Marshak-Rothstein A. (2001) Fas ligand engagement of resident peritoneal macrophages in vivo induces apoptosis and the production of neutrophil chemotactic factors. J Immunol 167:6217–6224PubMedGoogle Scholar
  36. 36.
    Hohlbaum AM, Moe S, Marshak-Rothstein A. (2000) Opposing effects of transmembrane and soluble Fas ligand expression on inflammation and tumor cell survival. J Exp Med 191:1209–1220CrossRefPubMedGoogle Scholar
  37. 37.
    Igney FH, Behrens CK, Krammer PH (2000) Tumor counterattack–concept and reality. Eur J Immunol 30:725–731CrossRefPubMedGoogle Scholar
  38. 38.
    Igney FH, Behrens CK, Krammer PH (2003) The influence of CD95L expression on tumor rejection in mice. Eur J Immunol 33:2811–2821CrossRefPubMedGoogle Scholar
  39. 39.
    Igney FH, Behrens CK, Krammer PH (2005) CD95L mediates tumor counterattack in vitro but induces neutrophil-independent tumor rejection in vivo. Int J Cancer 113:78–87CrossRefPubMedGoogle Scholar
  40. 40.
    Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–88CrossRefPubMedGoogle Scholar
  41. 41.
    Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71:907–20PubMedGoogle Scholar
  42. 42.
    Judge TA, Desai NM, Yang Z, Rostami S, Alonso L, Zhang H, Chen Y, Markman JF, DeMateo RP, Barker CF, Naji A, Turka LA (1998) Utility of adenoviral-mediated Fas ligand gene transfer to modulate islet allograft survival. Transplantation 66:426–434CrossRefPubMedGoogle Scholar
  43. 43.
    Kang SM, Braat D, Schneider DB, O’Rourke RW, Lin Z, Ascher NL, Dichek DA, Baekkeskov S, Stock PG (2000) A non-cleavable mutant of Fas ligand does not prevent neutrophilic destruction of islet transplants. Transplantation 69:1813–1817CrossRefPubMedGoogle Scholar
  44. 44.
    Kang SM, Hoffmann A, Le D, Springer ML, Stock PG, Blau HM (1997) Immune response and myoblasts that express Fas ligand. Science 278:1322–1324CrossRefPubMedGoogle Scholar
  45. 45.
    Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S (1997) Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3:738–743CrossRefPubMedGoogle Scholar
  46. 46.
    Khar A, Varalakshmi C, Pardhasaradhi BV, Mubarak Ali A, Kumari AL (1998) Depletion of the natural killer cell population in the peritoneum by AK- 5 tumor cells overexpressing fas-ligand: a mechanism of immune evasion. Cell Immunol 189:85–91CrossRefPubMedGoogle Scholar
  47. 47.
    Klas C, Debatin KM, Jonker RR, Krammer PH (1993) Activation interferes with the APO-1 pathway in mature human T cells. Int Immunol 5:625–630PubMedGoogle Scholar
  48. 48.
    Krammer PH (1997) The tumor strikes back. Cell Death Differ 4:362–364CrossRefGoogle Scholar
  49. 49.
    Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795CrossRefPubMedGoogle Scholar
  50. 50.
    Krueger A, Baumann S, Krammer PH, Kirchhoff S (2001) FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol 21:8247–8254CrossRefPubMedGoogle Scholar
  51. 51.
    Krueger A, Fas SC, Baumann S, Krammer PH (2003) The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunol Rev 193:58–69CrossRefPubMedGoogle Scholar
  52. 52.
    Kume T, Oshima K, Yamashita Y, Shirakusa T, Kikuchi M (1999) Relationship between Fas-ligand expression on carcinoma cell and cytotoxic T-lymphocyte response in lymphoepithelioma-like cancer of the stomach. Int J Cancer 84:339–343CrossRefPubMedGoogle Scholar
  53. 53.
    Kurooka M, Nuovo GJ, Caligiuri MA, Nabel GJ (2002) Cellular localization and function of Fas ligand (CD95L) in tumors. Cancer Res 62:1261–1265PubMedGoogle Scholar
  54. 54.
    Kurts C, Heath WR, Kosaka H, Miller JF, Carbone FR (1998) The peripheral deletion of autoreactive CD8+ T cells induced by cross-presentation of self-antigens involves signaling through CD95 (Fas, Apo-1). J Exp Med 188:415–420CrossRefPubMedGoogle Scholar
  55. 55.
    Lau HT, Yu M, Fontana A, Stoeckert CJ Jr (1996) Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273:109–112PubMedGoogle Scholar
  56. 56.
    Li JH, Rosen D, Sondel P, Berke G (2002) Immune privilege and FasL: two ways to inactivate effector cytotoxic T lymphocytes by FasL-expressing cells. Immunology 105:267–277CrossRefPubMedGoogle Scholar
  57. 57.
    Li XK, Okuyama T, Tamura A, Enosawa S, Kaneda Y, Takahara S, Funashima N, Yamada M, Amemiya H, Suzuki S (1998) Prolonged survival of rat liver allografts transfected with Fas ligand- expressing plasmid. Transplantation 66:1416–1423CrossRefPubMedGoogle Scholar
  58. 58.
    Li-Weber M, Krammer PH (2003) Function and regulation of the CD95 (APO-1/Fas) ligand in the immune system. Semin Immunol 15:145–157CrossRefPubMedGoogle Scholar
  59. 59.
    Lynch DH, Ramsdell F, Alderson MR (1995) Fas and FasL in the homeostatic regulation of immune responses. Immunol Today 16:569–745CrossRefPubMedGoogle Scholar
  60. 60.
    Mariani SM, Krammer PH (1998) Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur J Immunol 28:973–982CrossRefPubMedGoogle Scholar
  61. 61.
    Mariani SM, Matiba B, Bäumler C, Krammer PH (1995) Regulation of cell surface APO-1/Fas (CD95) ligand expression by metalloproteases. Eur J Immunol 25:2303–2307PubMedGoogle Scholar
  62. 62.
    Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67CrossRefPubMedGoogle Scholar
  63. 63.
    Matsue H, Matsue K, Walters M, Okumura K, Yagita H, Takashima A. (1999) Induction of antigen-specific immunosuppression by CD95L cDNA-transfected ‘killer’ dendritic cells. Nature Med 5:930–937CrossRefPubMedGoogle Scholar
  64. 64.
    Min WP, Gorczynski R, Huang XY, Kushida M, Kim P, Obataki M, Lei J, Suri RM, Cattral MS (2000) Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J Immunol 164:161–167PubMedGoogle Scholar
  65. 65.
    Miwa K, Asano M, Horai R, Iwakura Y, Nagata S, Suda T (1998) Caspase 1-independent IL-1beta release and inflammation induced by the apoptosis inducer Fas ligand. Nat Med 4:1287–1292CrossRefPubMedGoogle Scholar
  66. 66.
    Muller M, Strand S, Hug H, Heinemann EM, Walczak H, Hofmann WJ, Stremmel W, Krammer PH, Galle PR (1997) Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO- 1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99:403–413PubMedGoogle Scholar
  67. 67.
    Muller M, Wilder S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M, Krammer PH (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188:2033–2045CrossRefPubMedGoogle Scholar
  68. 68.
    Nishimatsu H, Takeuchi T, Ueki T, Kajiwara T, Moriyama N, Ishida T, Li B, Kakizoe T, Kitamura T (1999) CD95 ligand expression enhances growth of murine renal cell carcinoma in vivo. Cancer Immunol Immunother 48:56–61CrossRefPubMedGoogle Scholar
  69. 69.
    Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel RM (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411:1058–1064PubMedGoogle Scholar
  70. 70.
    O’Connell J, Houston A, Bennett MW, O’Sullivan GC, Shanahan F (2001) Immune privilege or inflammation? Insights into the Fas ligand enigma. Nat Med 7:271–274CrossRefPubMedGoogle Scholar
  71. 71.
    Okamoto S, Takamizawa S, Bishop W, Wen J, Kimura K, Sandler A. (1999) Overexpression of Fas ligand does not confer immune privilege to a pancreatic beta tumor cell line (betaTC-3). J Surg Res 84:77–81CrossRefPubMedGoogle Scholar
  72. 72.
    Ottonello L, Tortolina G, Amelotti M, Dallegri F (1999) Soluble Fas ligand is chemotactic for human neutrophilic polymorphonuclear leukocytes. J Immunol 162:3601–3606PubMedGoogle Scholar
  73. 73.
    Phillips TA,, Ni J, Pan G, Ruben SM, Wei YF, Pace JL, Hunt JS (1999) TRAIL (Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege. J Immunol 162:6053–6059PubMedGoogle Scholar
  74. 74.
    Rescigno M, Piguet V, Valzasina B, Lens S, Zubler R, French L, Kindler V, Tschopp J, Ricciardi-Castagnoli P (2000) Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction: a new role for Fas ligand in inflammatory responses. J Exp Med 192:1661–1668CrossRefPubMedGoogle Scholar
  75. 75.
    Restifo NP (2000) Not so Fas: re-evaluating the mechanisms of immune privilege and tumor escape. Nat Med 6:493–495PubMedGoogle Scholar
  76. 76.
    Restifo NP (2001) Countering the ’counterattack’ hypothesis. Nat Med 7:259CrossRefPubMedGoogle Scholar
  77. 77.
    Rogers AM, Boime I, Connolly J, Cook JR, Russell JH (1998) Maternal-fetal tolerance is maintained despite transgene-driven trophoblast expression of MHC class I, and defects in Fas and its ligand. Eur J Immunol 28:3479–3487CrossRefPubMedGoogle Scholar
  78. 78.
    Saas P, Walker PR, Hahne M, Quiquerez AL, Schnuriger V, Perrin G, French L, Van Meir EG, de Tribolet N, Tschopp J, Dietrich PY (1997) Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest 99:1173–1178PubMedGoogle Scholar
  79. 79.
    Sabelko KA, Kelly KA, Nahm MH, Cross AH, Russell JH (1997) Fas and Fas ligand enhance the pathogenesis of experimental allergic encephalomyelitis, but are not essential for immune privilege in the central nervous system. J Immunol 159:3096–3099PubMedGoogle Scholar
  80. 80.
    Schmitz I, Kirchhoff S, Krammer PH (2000) Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32:1123–1136CrossRefPubMedGoogle Scholar
  81. 81.
    Schmitz I, Krueger A, Baumann S, Schulze-Bergkamen H, Krammer PH, Kirchhoff S (2003) An IL-2-dependent switch between CD95 signaling pathways sensitizes primary human T cells toward CD95-mediated activation-induced cell death. J Immunol 171:2930–2936PubMedGoogle Scholar
  82. 82.
    Seino K, Iwabuchi K, Kayagaki N, Miyata R, Nagaoka I, Matsuzawa A, Fukao K, Yagita H, Okumura K (1998) Chemotactic activity of soluble Fas ligand against phagocytes. J Immunol 161:4484–4488PubMedGoogle Scholar
  83. 83.
    Seino K, Kayagaki N, Okumura K, Yagita H (1997) Antitumor effect of locally produced CD95 ligand. Nat Med 3:165–170CrossRefPubMedGoogle Scholar
  84. 84.
    Shimizu M, Fontana A, Takeda Y, Yagita H, Yoshimoto T, Matsuzawa A. (1999) Induction of antitumor immunity with Fas/APO-1 ligand (CD95L)- transfected neuroblastoma neuro-2a cells. J Immunol 162:7350–7357PubMedGoogle Scholar
  85. 85.
    Shudo K, Kinoshita K, Imamura R, Fan H, Hasumoto K, Tanaka M, Nagata S, Suda T (2001) The membrane-bound but not the soluble form of human Fas ligand is responsible for its inflammatory activity. Eur J Immunol 31:2504–2511CrossRefPubMedGoogle Scholar
  86. 86.
    Simon AK, Gallimore A, Jones E, Sawitzki B, Cerundolo V, Screaton GR (2002) Fas ligand breaks tolerance to self-antigens and induces tumor immunity mediated by antibodies. Cancer Cell 2:315–322CrossRefPubMedGoogle Scholar
  87. 87.
    Singh S, Ross SR., Acena M, Rowley DA, Schreiber H (1992) Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J Exp Med 175:139–146CrossRefPubMedGoogle Scholar
  88. 88.
    Stahnke K, Fulda S, Friesen C, Strauss G, Debatin KM (2001) Activation of apoptosis pathways in peripheral blood lymphocytes by in vivo chemotherapy. Blood 98:3066–3073CrossRefPubMedGoogle Scholar
  89. 89.
    Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH, Galle PR (1996) Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion?. Nat Med 2:1361–1366PubMedGoogle Scholar
  90. 90.
    Strater J, Walczak H, Hasel C, Melzner I, Leithauser F, Moller P (2001) CD95 ligand (CD95L) immunohistochemistry: a critical study on 12 antibodies. Cell Death Differ 8:273–278CrossRefPubMedGoogle Scholar
  91. 91.
    Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA (1997) CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99:396–402PubMedGoogle Scholar
  92. 92.
    Tada Y, Wang JO, Takiguchi Y, Tatsumi K, Kuriyama T, Okada S, Tokuhisa T, Sakiyama S, Tagawa M. (2002) Cutting edge: a novel role for Fas ligand in facilitating antigen acquisition by dendritic cells. J Immunol 169:2241–2245PubMedGoogle Scholar
  93. 93.
    Takeuchi T, Ueki T, Nishimatsu H, Kajiwara T, Ishida T, Jishage K, Ueda O, Suzuki H, Li B, Moriyama N, Kitamura T (1999) Accelerated rejection of Fas ligand-expressing heart grafts. J Immunol 162:518–522PubMedGoogle Scholar
  94. 94.
    Walker PR, Saas P, Dietrich PY (1998) Tumor expression of Fas ligand (CD95L) and the consequences. Curr Opin Immunol 10:564–572CrossRefPubMedGoogle Scholar
  95. 95.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317CrossRefPubMedGoogle Scholar
  96. 96.
    Yagita H, Seino K, Kayagaki N, Okumura K (1996) CD95 ligand in graft rejection. Nature 379:682CrossRefPubMedGoogle Scholar
  97. 97.
    Yolcu ES, Askenasy N, Singh NP, Cherradi SE, Shirwan H (2002) Cell membrane modification for rapid display of proteins as a novel means of immunomodulation: FasL-decorated cells prevent islet graft rejection. Immunity 17:795–808CrossRefPubMedGoogle Scholar
  98. 98.
    Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71CrossRefPubMedGoogle Scholar
  99. 99.
    Zhang HG, Fleck M, Kern ER, Liu D, Wang Y, Hsu HC, Yang P, Wang Z, Curiel DT, Zhou T, Mountz JD (2000) Antigen presenting cells expressing Fas ligand down-modulate chronic inflammatory disease in Fas ligand-deficient mice. J Clin Invest 105:813–821PubMedGoogle Scholar
  100. 100.
    Zhang HG, Su X, Liu D, Liu W, Yang P, Wang Z, Edwards CK, Bluethmann H, Mountz JD, Zhou T (1999) Induction of specific T cell tolerance by Fas ligand-expressing antigen-presenting cells. J Immunol 162:1423–1430PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Tumor Immunology ProgramGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Schering AG, CRBA DermatologyBerlinGermany

Personalised recommendations