Advertisement

Cancer Immunology, Immunotherapy

, Volume 54, Issue 11, pp 1059–1071 | Cite as

CD3 × CD28 cross-interacting bispecific antibodies improve tumor cell dependent T-cell activation

  • An Willems
  • Steve Schoonooghe
  • Dominique Eeckhout
  • Geert De Jaeger
  • Johan Grooten
  • Nico MertensEmail author
Original Article

Abstract

Bispecific antibodies (Bs-Abs) containing an anti-CD3 and an anti-TAA specificity can recruit T cells to the tumor for cancer immunotherapy. To be effective, efficient activation at the tumor site is a prerequisite. This can be achieved by triggering both the T-cell receptor and the co-stimulatory molecule CD28. We engineered two recombinant cross-interacting Bs-Abs (CriBs-Abs) by incorporating a peptide tag and its cognate single-chain variable fragment (scFv), respectively, into a pair of (tumor × CD3) and (tumor × CD28) binding Bs-Abs. A 30-fold lower concentration of the activating CriBs-Ab as compared to non interacting Bs-Ab was sufficient for strong T-cell activation in the presence of tumor cells. One thousand-fold higher concentrations of both CriBs-Abs were required for marginal T-cell activation (70-fold below maximal response) in the absence of tumor cells. An optimized stoichiometry (1 : 1000) of activating versus co-stimulating CriBs-Ab thus allowed low doses of activating CriBs-Ab to induce tumor-cell dependent T-cell activation when used in combination with high concentrations of the pre-targeted co-stimulating CriBs-Ab in vitro. This indicates a large window of operation in which only tumor cell dependent T-cell activation is induced and systemic tumor cell independent T-cell activation is avoided, while ensuring optimal activation with a low concentration of the activating CriBs-Ab, which has the highest potential to induce toxic effects in vivo.

Keywords

T lymphocytes Co-stimulation Bispecific antibodies Tumor immunotherapy Recombinant antibodies CD28 

Abbreviations

Ab

Antibody(-ies)

Bs-Ab

Bispecific Ab

Ts-Ab

Trispecific Ab

CriBs-Ab

Cross-interacting bispecific Ab

hPLAP

Human placental alkaline phosphatase

scFv

Single-chain variable fragment

TAA

Tumor associated antigen

Notes

Acknowledgements

An Willems is a research associate with the Fonds Wetenschappelijk Onderzoek (FWO)—Vlaanderen. We thank T. Van Belle and D. Ginneberghe (Ghent University, Belgium) for the use of T-HA cells. Dr. M. Hall (University of Birmingham, U.K.) and Dr. M. De Broe (University of Antwerp, Belgium) are acknowledged for donating HEK293T cells and MO4I4 cells, respectively.

References

  1. 1.
    Adams GP, Schier R, McCall AM, Crawford RS, Wolf EJ, Weiner LM, Marks JD (1998) Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br J Cancer 77(9):1405–1412PubMedGoogle Scholar
  2. 2.
    Barbet J, Kraeber-Bodere F, Vuillez JP, Gautherot E, Rouvier E, Chatal JF (1999) Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother Radiopharm 14(3):153–166PubMedGoogle Scholar
  3. 3.
    Benedict CA., MacKrell AJ, Anderson WF (1997) Determination of the binding affinity of an anti-CD34 single-chain antibody using a novel, flow cytometry based assay. J Immunol Methods 201(2):223–231CrossRefPubMedGoogle Scholar
  4. 4.
    Boerman OC, van Eerd J, Oyen WJ, Corstens FH (2001) A 3-step pretargeting strategy to image infection. J Nucl Med 42(9):1405–1411PubMedGoogle Scholar
  5. 5.
    Boerman OC, Van Schaijk FG, Oyen WJ, Corstens FH (2003) Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med 44(3):400–411PubMedGoogle Scholar
  6. 6.
    Bohlen H, Hopff T, Manzke O, Engert A, Kube D, Wickramanayake PD, Diehl V, Tesch H (1993) Lysis of malignant B cells from patients with B-chronic lymphocytic leukemia by autologous T cells activated with CD3×CD19 bispecific antibodies in combination with bivalent CD28 antibodies. Blood 82(6):1803–1812PubMedGoogle Scholar
  7. 7.
    Bohlen H, Manzke O, Titzer S, Lorenzen J, Kube D, Engert A, Abken H, Wolf J, Diehl V, Tesch H (1997) Prevention of Epstein-Barr virus-induced human B-cell lymphoma in severe combined immunodeficient mice treated with CD3xCD19 bispecific antibodies, CD28 monospecific antibodies, and autologous T cells. Cancer Res 57(9):1704–1709PubMedGoogle Scholar
  8. 8.
    Bolhuis RL, Lamers CH, Goey SH, Eggermont AM, Trimbos JB, Stoter G, Lanzavecchia A, di Re E, Miotti S, Raspagliesi F et al (1992) Adoptive immunotherapy of ovarian carcinoma with bs-MAb-targeted lymphocytes: a multicenter study. Int J Cancer Suppl 7:78–81PubMedGoogle Scholar
  9. 9.
    Chambers CA. (2001) The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol 22(4):217–223CrossRefPubMedGoogle Scholar
  10. 10.
    Cochlovius B, Kipriyanov SM, Stassar MJ, Schuhmacher J, Benner A, Moldenhauer G, Little M (2000) Cure of Burkitt’s lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3×CD19 tandem diabody, and CD28 costimulation. Cancer Res 60(16):336–341Google Scholar
  11. 11.
    De Broe ME, Pollet DE (1988) Multicenter evaluation of human placental alkaline phosphatase as a possible tumor-associated antigen in serum. Clin Chem 34(10):1995–1999PubMedGoogle Scholar
  12. 12.
    De Gast GC, Van Houten AA, Haagen IA, Klein S, De Weger RA, Van Dijk A, Phillips J, Clark M, Bast BJ (1995) Clinical experience with CD3 × CD19 bispecific antibodies in patients with B cell malignancies. J Hematother 4(5):433–437PubMedGoogle Scholar
  13. 13.
    De Jonge J, Brissinck J, Heirman C, Demanet C, Leo O, Moser M, Thielemans K (1995) Production and characterization of bispecific single-chain antibody fragments. Mol.Immunol 32(17–18):1405–1412CrossRefPubMedGoogle Scholar
  14. 14.
    De Sutter K, Feys V, Van de Voorde A, Fiers W (1992) Production of functionally active murine and murine::human chimeric F(ab’)2 fragments in COS-1 cells. Gene 113(2):223–230CrossRefPubMedGoogle Scholar
  15. 15.
    Demanet C, Brissinck J, De Jonge J, Thielemans K (1996) Bispecific antibody-mediated immunotherapy of the BCL1 lymphoma: increased efficacy with multiple injections and CD28-induced costimulation. Blood 87(10):4390–4398PubMedGoogle Scholar
  16. 16.
    Dooms H, Desmedt M, Vancaeneghem S, Rottiers P, Goossens V, Fiers W, Grooten J (1998) Quiescence-inducing and antiapoptotic activities of IL-15 enhance secondary CD4+ T cell responsiveness to antigen. J Immunol 161(5):2141–2150PubMedGoogle Scholar
  17. 17.
    DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7(1):379–387PubMedGoogle Scholar
  18. 18.
    Eeckhout D, Fiers E, Sienaert R, Snoeck V, Depicker A, De Jaeger G (2000) Isolation and characterization of recombinant antibody fragments against CDC2a from Arabidopsis thaliana. Eur J Biochem 267(23): 6775–6783PubMedGoogle Scholar
  19. 19.
    Goldenberg DM, Chang CH, Sharkey RM, Rossi EA, Karacay H, McBride W, Hansen HJ, Chatal JF, Barbet J (2003) Radioimmunotherapy: is avidin-biotin pretargeting the preferred choice among pretargeting methods?. Eur J Nucl Med Mol Imaging 30(5):773–776PubMedGoogle Scholar
  20. 20.
    Govindan SV, Goldenberg DM, Hansen HJ, Griffiths GL (2000) Advances in the use of monoclonal antibodies in cancer radiotherapy. Pharm Sci Technol Today 3(3):90–98CrossRefPubMedGoogle Scholar
  21. 21.
    Grosse-Hovest L, Brandl M, Dohlsten M, Kalland T, Wilmanns W, Jung G (1999) Tumor-growth inhibition with bispecific antibody fragments in a syngeneic mouse melanoma model: the role of targeted T-cell co-stimulation via CD28. Int J Cancer 80(1):138–144CrossRefPubMedGoogle Scholar
  22. 22.
    Haagen IA (1995) Performance of CD3xCD19 bispecific monoclonal antibodies in B cell malignancy. Leuk Lymphoma 19(5–6):381–393PubMedGoogle Scholar
  23. 23.
    Harder T (2001) Raft membrane domains and immunoreceptor functions. Adv Immunol 77:45–92PubMedGoogle Scholar
  24. 24.
    Hendrix PG, Dauwe SE, Van De Voorde A, Nouwen EJ, Hoylaerts MF, De Broe ME (1991) Radiolocalisation and imaging of stably HPLAP-transfected MO4 tumours with monoclonal antibodies and fragments. Br J Cancer 64(6):1060–1068PubMedGoogle Scholar
  25. 25.
    Hombach A, Mathas S, Jensen M, Tillmann T, Menges M, Diehl V, Kruis W, Pohl C (1997) Activation of resting T cells against the CA 72–4 tumor antigen with an anti-CD3/CA 72–4 bispecific antibody in combination with a costimulatory anti-CD28 antibody. Anticancer Res 17(3C):2025–2032PubMedGoogle Scholar
  26. 26.
    Hombach A., Tillmann T, Jensen M, Heuser C, Sircar R, Diehl V, Kruis W, Pohl C (1997) Specific activation of resting T cells against CA19–9+ tumor cells by an anti-CD3/CA19–9 bispecific antibody in combination with a costimulatory anti-CD28 antibody. J Immunother 20(5):325–333PubMedGoogle Scholar
  27. 27.
    Jung G, Freimann U, Von Marschall Z, Reisfeld RA, Wilmanns W (1991) Target cell-induced T cell activation with bi- and trispecific antibody fragments. Eur J Immunol 21(10):2431–2435PubMedGoogle Scholar
  28. 28.
    Jung G, Brandl M, Eisner W, Fraunberger P, Reifenberger G, Schlegel U, Wiestler OD, Reulen HJ, Wilmanns W (2001) Local immunotherapy of glioma patients with a combination of 2 bispecific antibody fragments and resting autologous lymphocytes: evidence for in situ t-cell activation and therapeutic efficacy. Int J Cancer 91(2):225–230CrossRefPubMedGoogle Scholar
  29. 29.
    Karacay H, Sharkey RM, McBride WJ, Griffiths GL, Qu Z, Chang K, Hansen HJ, Goldenberg DM (2002) Pretargeting for cancer radioimmunotherapy with bispecific antibodies: role of the bispecific antibody’s valency for the tumor target antigen. Bioconjug Chem 13(5):1054–1070CrossRefPubMedGoogle Scholar
  30. 30.
    Katayose Y, Kudo T, Suzuki M, Shinoda M, Saijyo S, Sakurai N, Saeki H, Fukuhara K, Imai K, Matsuno S (1996) MUC1-specific targeting immunotherapy with bispecific antibodies: inhibition of xenografted human bile duct carcinoma growth. Cancer Res 56(18):4205–4212PubMedGoogle Scholar
  31. 31.
    Kipriyanov SM, Moldenhauer G, Schuhmacher J, Cochlovius B, Von der Lieth CW, Matys ER, Little M (1999) Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol 293(1):41–56CrossRefPubMedGoogle Scholar
  32. 32.
    Koshida K, Stigbrand T, Munck-Wikland E, Hisazumi H, Wahren B (1990) Analysis of serum placental alkaline phosphatase activity in testicular cancer and cigarette smokers. Urol Res 18(3):169–173CrossRefPubMedGoogle Scholar
  33. 33.
    Kroesen BJ, Buter J, Sleijfer DT, Janssen RA, van der Graaf WT, The TH, de Leij L, Mulder NH (1994) Phase I study of intravenously applied bispecific antibody in renal cell cancer patients receiving subcutaneous interleukin 2. Br J Cancer 70(4):652–661PubMedGoogle Scholar
  34. 34.
    Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T, Thompson CB, June CH (1997) Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 159(12):5921–5930PubMedGoogle Scholar
  35. 35.
    Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658CrossRefGoogle Scholar
  36. 36.
    Link BK, Kostelny SA, Cole MS, Fusselman WP, Tso JY, Weiner GJ (1998) Anti-CD3-based bispecific antibody designed for therapy of human B-cell malignancy can induce T-cell activation by antigen-dependent and antigen-independent mechanisms. Int J Cancer 77(2):251–256CrossRefPubMedGoogle Scholar
  37. 37.
    Manzke O, Tesch H, Borchmann P, Wolf J, Lackner K, Gossmann A, Diehl V, Bohlen H (2001) Locoregional treatment of low-grade B-cell lymphoma with CD3xCD19 bispecific antibodies and CD28 costimulation. I. Clinical phase I evaluation. Int J Cancer 91(4):508–515CrossRefPubMedGoogle Scholar
  38. 38.
    Mazzoni A, Mezzanzanica D, Jung G, Wolf H, Colnaghi MI, Canevari S (1996) CD3-CD28 costimulation as a means to avoiding T cell preactivation in bispecific monoclonal antibody-based treatment of ovarian carcinoma. Cancer Res 56(23):5443–5449PubMedGoogle Scholar
  39. 39.
    Miotti S, Negri DR, Valota O, Calabrese M, Bolhuis RL, Gratama JW, Colnaghi MI, Canevari S (1999) Level of anti-mouse-antibody response induced by bi-specific monoclonal antibody OC/TR in ovarian-carcinoma patients is associated with longer survival. Int J Cancer 84(1):62–68CrossRefPubMedGoogle Scholar
  40. 40.
    Nielsen UB, Adams GP, Weiner LM, Marks JD (2000) Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res 60(22):6434–6440PubMedGoogle Scholar
  41. 41.
    Nitta T, Sato K, Yagita H, Okumura K, Ishii S (1990) Preliminary trial of specific targeting therapy against malignant glioma. Lancet 335(8686):368–371CrossRefPubMedGoogle Scholar
  42. 42.
    Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199CrossRefPubMedGoogle Scholar
  43. 43.
    O’Mahoney JV, Adams TE (1994) Optimization of experimental variables influencing reporter gene expression in hepatoma cells following calcium phosphate transfection. DNA Cell Biol 13(12):1227–1232PubMedGoogle Scholar
  44. 44.
    Renner C, Pfreundschuh M (1995) Tumor therapy by immune recruitment with bispecific antibodies. Immunol.Rev 145:179–209PubMedGoogle Scholar
  45. 45.
    Renner C, Bauer S, Sahin U, Jung W, van Lier R, Jacobs G, Held G, Pfreundschuh M (1996) Cure of disseminated xenografted human Hodgkin’s tumors by bispecific monoclonal antibodies and human T cells: the role of human T-cell subsets in a preclinical model. Blood 87(7):2930–2937PubMedGoogle Scholar
  46. 46.
    Schoonjans R, Willems A, Schoonooghe S, Fiers W, Grooten J, Mertens N (2000) Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives. J Immunol 165(12):7050–7057PubMedGoogle Scholar
  47. 47.
    Schwartz RH (1997) T cell clonal anergy. Curr Opin Immunol 9(3):351–357CrossRefPubMedGoogle Scholar
  48. 48.
    Smans KA, Hoylaerts MF, Narisawa S, Millan JL, De Broe ME (1995) Bispecific antibody-mediated lysis of placental and germ cell alkaline phosphatase targeted solid tumors in immunocompetent mice. Cancer Res 55(19):4383–4390PubMedGoogle Scholar
  49. 49.
    Tibben JG, Boerman OC, Massuger LF, Schijf CP, Claessens RA, Corstens FH (1996) Pharmacokinetics, biodistribution and biological effects of intravenously administered bispecific monoclonal antibody OC/TR F(ab’)2 in ovarian carcinoma patients. Int J Cancer 66(4):477–483CrossRefPubMedGoogle Scholar
  50. 50.
    Viola A, Lanzavecchia A (1999) T-cell activation and the dynamic world of rafts. Apmis 107(7):615–623PubMedGoogle Scholar
  51. 51.
    Willems A., Leoen J, Schoonooghe S, Grooten J, Mertens N (2003) Optimizing expression and purification from cell culture medium of trispecific recombinant antibody derivatives. J Chromatogr B 786(1–2):161–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • An Willems
    • 1
  • Steve Schoonooghe
    • 1
  • Dominique Eeckhout
    • 2
  • Geert De Jaeger
    • 2
  • Johan Grooten
    • 1
  • Nico Mertens
    • 1
    Email author
  1. 1.Flanders Interuniversity Institute for Biotechnology(VIB), Department for Molecular Biomedical ResearchGhent UniversityGhentBelgium
  2. 2.Flanders Interuniversity Institute for Biotechnology(VIB), Department for Plant systems BiologyGhent UniversityBelgium

Personalised recommendations