Cancer Immunology, Immunotherapy

, Volume 55, Issue 3, pp 277–288 | Cite as

The biological effects of syngeneic and allogeneic cytokine-expressing prophylactic whole cell vaccines and the influence of irradiation in a murine melanoma model

  • Marie-Christine Labarthe
  • Nicole Halanek
  • Lindsay Birchall
  • Nick Russell
  • Christiane Desel
  • Stephen Todryk
  • Marcus J. Peters
  • Aisha Lucas
  • Frank W. Falkenberg
  • Angus G. Dalgleish
  • Mike Whelan
  • Stephen John Ward
Original Article


Allogeneic whole tumour cell vaccines are inherently practical compared with autologous vaccines. Cell lines are derived from allogeneic tumour, grown in bulk and then administered as a vaccine to the patient, following irradiation, which not only prevents any replication but also enhances antigen presentation. Protection is believed to occur through the presentation of antigens shared between the syngeneic and allogeneic tumours. Although cytokine-transfected tumour whole cell vaccines have been used clinically, little data is available comparing the effects of immunomodulatory cytokine-transfection directly on the same cells when used as both an allogeneic and autologous vaccine. To address this, weakly immunogenic B16-F10 (H-2b) murine melanoma was transfected to secrete either GM-CSF, IL-4 or IL-7. Prophylactic vaccination of both syngeneic C57/BL6 (H-2b) (B6) and allogeneic C3H/Hej (H-2k) (C3H) mice showed the effects of transfected cytokine varied between models. Both GM-CSF and IL-7 significantly (P<0.05) increased the levels of protection within syngeneic B6 mice, but had a diminished effect (P>0.05) within C3H allogeneic mice. Allogeneic B16-F10 cells and syngeneic K1735 cells generated CTL against K1735 suggesting cross-reactive immunity. Using cells labeled with fluorescent dye we demonstrate that irradiated vaccines, of either syngeneic or allogeneic origin, appear to generate potent immune responses and fragments of either vaccine remain at the injection site for up to 9 days. This study shows that protection can be enhanced in vivo by using transfected cytokine, but suggests that irradiated whole cell vaccines, of either tissue-type, are rapidly processed. This leads to the conclusion that the cytokine effects are transient and thus transfection with cytokine may be of limited long-term use in situ.


Allogeneic Vaccine Tumour Cytokine Injection-site 



This work was funded by a DTI/BBSRC/MRC Link grant and Onyvax Ltd. We thank Mr. N. Woods for his technical assistance.


  1. 1.
    1. Arienti F, Belli F, Napolitano F, Sule-Suso J, Mazzocchi A, Gallino GF, Cattelan A, Santantonio C, Rivoltini L, Melani C, Colombo MP, Cascinelli N, Maio M, Parmiani G, Sanantonio C (1999) Vaccination of melanoma patients with interleukin 4 gene-transduced allogeneic melanoma cells. Hum Gene Ther 10:2907PubMedCrossRefGoogle Scholar
  2. 2.
    2. Berd D, Maguire HC Jr, McCue P, Mastrangelo MJ (1990) Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologic results in 64 patients. J Clin Oncol 8:1858PubMedGoogle Scholar
  3. 3.
    3. Bevan MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143:1283PubMedCrossRefGoogle Scholar
  4. 4.
    4. Chong H, Todryk S, Hutchinson G, Hart IR, Vile RG (1998) Tumour cell expression of B7 costimulatory molecules and interleukin-12 or granulocyte-macrophage colony-stimulating factor induces a local antitumour response and may generate systemic protective immunity. Gene Ther 5:223PubMedCrossRefGoogle Scholar
  5. 5.
    5. Dalgleish AG (2000) Cancer vaccines. Br J Cancer 82:1619PubMedCrossRefGoogle Scholar
  6. 6.
    6. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165PubMedCrossRefGoogle Scholar
  7. 7.
    7. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539PubMedCrossRefGoogle Scholar
  8. 8.
    8. Dranoff G, Soiffer R, Lynch T, Mihm M, Jung K, Kolesar K, Liebster L, Lam P, Duda R, Mentzer S, Singer S, Tanabe K, Johnson R, Sober A, Bhan A, Clift S, Cohen L, Parry G, Rokovich J, Richards L, Drayer J, Berns A, Mulligan RC (1997) A phase I study of vaccination with autologous, irradiated melanoma cells engineered to secrete human granulocyte-macrophage colony stimulating factor. Hum Gene Ther 8:111PubMedCrossRefGoogle Scholar
  9. 9.
    9. Eaton JD, Perry MJ, Nicholson S, Guckian M, Russell N, Whelan M, Kirby RS (2002) Allogeneic whole-cell vaccine: a phase I/II study in men with hormone- refractory prostate cancer. BJU Int 89:19PubMedCrossRefGoogle Scholar
  10. 10.
    10. Flexman JP, Manning LS, Robinson BW (1990) in vivo boosting of lung natural killer and lymphokine-activated killer cell activity by interleukin-2: comparison of systemic, intrapleural and inhalation routes. Clin Exp Immunol 82:151PubMedCrossRefGoogle Scholar
  11. 11.
    11. Fowler DH, Breglio J, Nagel G, Eckhaus MA, Gress RE (1996) Allospecific CD8+ Tc1 and Tc2 populations in graft-versus-leukemia effect and graft-versus-host disease. J Immunol 157:4811PubMedGoogle Scholar
  12. 12.
    12. Fowler DH, Breglio J, Nagel G, Hirose C, Gress RE (1996) Allospecific CD4+, Th1/Th2 and CD8+, Tc1/Tc2 populations in murine GVL: type I cells generate GVL and type II cells abrogate GVL. Biol Blood Marrow Transplant 2:118PubMedGoogle Scholar
  13. 13.
    13. Habal N, Gupta RK, Bilchik AJ, Yee R, Leopoldo Z, Ye W, Elashoff RM, Morton DL (2001) CancerVax, an allogeneic tumor cell vaccine, induces specific humoral and cellular immune responses in advanced colon cancer. Ann Surg Oncol 8:389PubMedCrossRefGoogle Scholar
  14. 14.
    14. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363PubMedCrossRefGoogle Scholar
  15. 15.
    15. Haridas V and Saxena RK (1995) Role of major histocompatibility complex class I antigens in modulating the performance of murine tumour cells in cold target competition assays. Immunology 84:86PubMedGoogle Scholar
  16. 16.
    16. Hearing VJ, Gersten DM, Montague PM, Vieira WD, Galetto G, Law LW (1986) Murine melanoma-specific tumor rejection activity elicited by a purified, melanoma-associated antigen. J Immunol 137:379PubMedGoogle Scholar
  17. 17.
    17. Hearing VJ, Vieira WD, Law LW (1985) Malignant melanoma: cross-reacting (common) tumor rejection antigens. Int J Cancer 35:403PubMedCrossRefGoogle Scholar
  18. 18.
    18. Hoover HC Jr, Brandhorst JS, Peters LC, Surdyke MG, Takeshita Y, Madariaga J, Muenz LR, Hanna MG Jr (1993) Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a phase III prospectively randomized trial. J Clin Oncol 11:390PubMedGoogle Scholar
  19. 19.
    19. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961PubMedCrossRefGoogle Scholar
  20. 20.
    20. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357PubMedCrossRefGoogle Scholar
  21. 21.
    21. Kayaga J, Souberbielle BE, Sheikh N, Morrow WJ, Scott-Taylor T, Vile R, Chong H, Dalgleish AG (1999) Anti-tumour activity against B16-F10 melanoma with a GM-CSF secreting allogeneic tumour cell vaccine. Gene Ther 6:1475PubMedCrossRefGoogle Scholar
  22. 22.
    22. Kircheis R, Kupcu Z, Wallner G, Rossler V, Schweighoffer T, Wagner E (2000) Interleukin-2 gene-modified allogeneic melanoma cell vaccines can induce cross-protection against syngeneic tumors in mice. Cancer Gene Ther 7:870PubMedCrossRefGoogle Scholar
  23. 23.
    23. Knight BC, Souberbielle BE, Rizzardi GP, Ball SE, Dalgleish AG (1996) Allogeneic murine melanoma cell vaccine: a model for the development of human allogeneic cancer vaccine. Melanoma Res 6:299PubMedGoogle Scholar
  24. 24.
    24. Laucius JF, Bodurtha AJ, Mastrangelo JM, Bellet RE (1977) A Phase II study of autologous irradiated tumor cells plus BCG in patients with metastatic malignant melanoma. Cancer 40:2091PubMedCrossRefGoogle Scholar
  25. 25.
    25. Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875PubMedCrossRefGoogle Scholar
  26. 26.
    26. Lynch DH and Miller RE (1990) Induction of murine lymphokine-activated killer cells by recombinant IL- 7. J Immunol 145:1983PubMedGoogle Scholar
  27. 27.
    27. Maio M, Fonsatti E, Lamaj E, Altomonte M, Cattarossi I, Santantonio C, Melani C, Belli F, Arienti F, Colombo MP, Parmiani G (2002) Vaccination of Stage IV patients with allogeneic IL-4- or IL-2-gene- transduced melanoma cells generates functional antibodies against vaccinating and autologous melanoma cells. Cancer Immunol Immunother 51:9PubMedCrossRefGoogle Scholar
  28. 28.
    28. Moller P, Bohm M, Czarnetszki BM, Schadendorf D (1996) Interleukin-7. Biology and implications for dermatology. Exp Dermatol 5:129PubMedCrossRefGoogle Scholar
  29. 29.
    29. Peter I, Mezzacasa A, LeDonne P, Dummer R, Hemmi S (2001) Comparative analysis of immunocritical melanoma markers in the mouse melanoma cell lines B16, K1735 and S91-M3. Melanoma Res 11:21PubMedCrossRefGoogle Scholar
  30. 30.
    30. Renkvist N, Castelli C, Robbins PF, Parmiani G (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50:3PubMedCrossRefGoogle Scholar
  31. 31.
    31. Russo V, Tanzarella S, Dalerba P, Rigatti D, Rovere P, Villa A, Bordignon C, Traversari C (2000) Dendritic cells acquire the MAGE-3 human tumour antigen from apoptotic cells and induce a class-I restricted T cell response. Proc Natl Acad Sci USA 97:2185PubMedCrossRefGoogle Scholar
  32. 32.
    32. Santin AD, Hermonat PL, Ravaggi A, Chiriva-Internati M, Hiserodt JC, Batchu RB (1998) The effects of irradiation on the expression of a tumour rejection antigen (heat chock protein gp96) in human cervical cancer. International J Radiat Biol 73:699CrossRefGoogle Scholar
  33. 33.
    33. Seaman WE, Sleisenger M, Eriksson E, Koo GC (1987) Depletion of natural killer cells in mice by monoclonal antibody to NK- 1.1. Reduction in host defense against malignancy without loss of cellular or humoral immunity. J Immunol 138:4539PubMedGoogle Scholar
  34. 34.
    34. Shrayer DP, Bogaars H, Hearing VJ, Wanebo HJ (1996) Immunization of mice with irradiated melanoma tumor cells transfected to secrete lymphokines and coupled with IL-2 or GM-CSF therapy. J Exp Ther Oncol 1:126PubMedGoogle Scholar
  35. 35.
    35. Sierra-Rivera E, Voorhees GJ, Freeman ML (1993) Gamma irradiation increases hsp-70 in Chinese Hamster Ovary cells. Radiat Res 135:40PubMedCrossRefGoogle Scholar
  36. 36.
    36. Simons JW, Mikhak B, Chang JF, DeMarzo AM, Carducci MA, Lim M, Weber CE, Baccala AA, Goemann MA, Clift SM, Ando DG, Levitsky HI, Cohen LK, Sanda MG, Mulligan RC, Partin AW, Carter HB, Piantadosi S, Marshall FF, Nelson WG (1999) Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 59:5160PubMedGoogle Scholar
  37. 37.
    37. Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC, Hodi FS, Liebster L, Lam P, Mentzer S, Singer S, Tanabe KK, Cosimi AB, Duda R, Sober A, Bhan A, Daley J, Neuberg D, Parry G, Rokovich J, Richards L, Drayer J, Berns A, Clift S, Dranoff G (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 95:13141PubMedCrossRefGoogle Scholar
  38. 38.
    38. Souberbielle BE, Westby M, Ganz S, Kayaga J, Mendes R, Morrow WJ, Dalgleish AG (1998) Comparison of four strategies for tumour vaccination in the B16-F10 melanoma model. Gene Ther 5:1447PubMedCrossRefGoogle Scholar
  39. 39.
    39. Tahara H, Zeh HJ, III, Storkus WJ, Pappo I, Watkins SC, Gubler U, Wolf SF, Robbins PD, Lotze MT (1994) Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res 54:182PubMedGoogle Scholar
  40. 40.
    40. Takanami I, Takeuchi K, Gika M (2002) Immunohistochemical detection of eosinophilic infiltration in pulmonary adenocarcinoma. Anticancer Res 22:2391PubMedGoogle Scholar
  41. 41.
    41. Thomas MC, Greten TF, Pardoll DM, Jaffee EM (1998) Enhanced tumor protection by granulocyte-macrophage colony-stimulating factor expression at the site of an allogeneic vaccine. Hum Gene Ther 9:835PubMedGoogle Scholar
  42. 42.
    42. Todryk SM, Birchall LJ, Erlich R, Halanek N, Orleans-Lindsay JK, Dalgleish AG (2001) Efficacy of cytokine gene transfection may differ for autologous and allogeneic tumour cell vaccines. Immunology 102:190PubMedCrossRefGoogle Scholar
  43. 43.
    43. Toes RE, Blom RJ, van d, V, Offringa R, Melief CJ, Kast WM (1996) Protective antitumor immunity induced by immunization with completely allogeneic tumor cells. Cancer Res 56:3782PubMedGoogle Scholar
  44. 44.
    44. Ward SJ, Casey D, Labarthe MC, Whelan M, Dalgleish A, Todryk S (2002) Immunotherapeutic potential of whole tumour cells. Cancer Immunol Immunother 51:351PubMedCrossRefGoogle Scholar
  45. 45.
    45. Wu TY and Fleischmann WR, Jr. (2001) Murine B16 melanoma vaccination-induced tumor immunity: identification of specific immune cells and functions involved. J Interferon Cytokine Res 21:1117PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Marie-Christine Labarthe
    • 1
  • Nicole Halanek
    • 2
  • Lindsay Birchall
    • 2
  • Nick Russell
    • 1
  • Christiane Desel
    • 1
  • Stephen Todryk
    • 3
  • Marcus J. Peters
    • 4
  • Aisha Lucas
    • 4
  • Frank W. Falkenberg
    • 4
  • Angus G. Dalgleish
    • 2
  • Mike Whelan
    • 1
  • Stephen John Ward
    • 1
  1. 1.Onyvax LtdSt George’s Hospital Medical SchoolLondonUK
  2. 2.Department of OncologySt George’s Hospital Medical SchoolLondonUK
  3. 3.Department of Biochemistry, Immune Regulation Research GroupTrinity College DublinDublin 2Ireland
  4. 4.Abteilung für Medizinische MikrobiologieRuhr-Universitaet BochumBochumGermany

Personalised recommendations