Cancer Immunology, Immunotherapy

, Volume 55, Issue 4, pp 394–403

Interferon-α/β upregulate IL-15 expression in vitro and in vivo: analysis in human hepatocellular carcinoma cell lines and in chronic hepatitis C patients during interferon-α/β treatment

  • Kouzaburo Yamaji
  • Shigeki Nabeshima
  • Masayuki Murata
  • Yong Chong
  • Norihiro Furusyo
  • Hideyuki Ikematsu
  • Jun Hayashi
Original Article
  • 183 Downloads

Abstract

Type I interferon (IFN) possesses antiviral and antitumor activities and also having an immune regulatory effect, activating cellular immune response and upregulating several cytokines. Recent study has shown that type I IFN upregurates the dendritic cell production of IL-15 capable of activating natural killer cells and CD8+ memory T lymphocytes. However, it is still unknown if type I IFN induces IL-15 production in non-immune cells and if type I IFN affects IL-15 production in vivo. The present study investigated the effect of type I IFNs on IL-15 expression in hepatocellular carcinoma (HCC) cell lines in vitro and in patients with chronic hepatitis C in vivo. When three HCC cell lines, Huh7, HepG2, and JHH4 were cultured in vitro, IFN upregulation of IL-15 expression was observed at both the mRNA and protein levels. In experiments using Huh7 cells, upregulation of IL-15 expression occurred within 24 h of the start of IFN stimulation, and both IFN-α and -β dose-dependently increased IL-15 production in the range from 100 U/ml to 10,000 U/ml of concentration. IFN-β showed stronger activity in IL-15 production induction in vitro than IFN-α. For in vivo examination, sera were obtained from 21 chronic hepatitis C patients treated with IFN and 29 healthy individuals, and the serum IL-15 level was quantified by ELISA. The serum IL-15 level of chronic hepatitis C patients before IFN treatment was similar to that of the healthy controls and significantly increased only during the IFN administration period. These results confirm that IFN-α/β induce IL-15 production and also suggest that IL-15 may be associated with type I IFN-induced immune response.

References

  1. 1.
    Alter HJ (1995) To C or not to C: these are the questions. Blood 85:1681–1695PubMedGoogle Scholar
  2. 2.
    Tong MJ, el-Farra NS, Reikes AR et al (1995) Clinical outcomes after transfusion-associated hepatitis C. N Engl J Med 332:1463–1466CrossRefPubMedGoogle Scholar
  3. 3.
    Tanaka K, Ikematsu H, Hirohata T et al (1996) Hepatitis C virus infection and risk of hepatocellular carcinoma among Japanese: possible role of type 1b (II) infection. J Natl Cancer Inst 88:742–746PubMedCrossRefGoogle Scholar
  4. 4.
    Tagger A, Donato F, Ribero ML et al (1999) Case-control study on hepatitis C virus (HCV) as a risk factor for hepatocellular carcinoma: the role of HCV genotypes and the synergism with hepatitis B virus and alcohol. Brescia HCC Study. Int J Cancer 81:695–699CrossRefPubMedGoogle Scholar
  5. 5.
    Hayashi J, Furusyo N, Ariyama I et al (2000) A relationship between the evolution of hepatitis C virus variants, liver damage, and hepatocellular carcinoma in patients with hepatitis C viremia. J Infect Dis 181:1523–1527CrossRefPubMedGoogle Scholar
  6. 6.
    Davis GL, Balart LA, Schiff ER et al (1989) Treatment of chronic hepatitis C with recombinant interferon alfa. A multicenter randomized, controlled trial. Hepatitis Interventional Therapy Group. N Engl J Med 321:1501–1506PubMedCrossRefGoogle Scholar
  7. 7.
    Di Bisceglie AM, Martin P, Kassianides C et al (1989) Recombinant interferon alfa therapy for chronic hepatitis C. A randomized, double-blind, placebo-controlled trial. N Engl J Med 321:1506–1510PubMedCrossRefGoogle Scholar
  8. 8.
    Kakumu S, Arao M, Yoshioka K et al (1990) Recombinant human alpha-interferon therapy for chronic non-A, non-B hepatitis: second report. Am J Gastroenterol 85:655–659PubMedGoogle Scholar
  9. 9.
    Hayashi J, Ohmiya M, Kishihara Y et al (1994) A statistical analysis of predictive factors of response to human lymphoblastoid interferon in patients with chronic hepatitis C. Am J Gastroenterol 89:2151–2156PubMedGoogle Scholar
  10. 10.
    Hayashi J, Kishihara Y, Ueno K et al (1998) Age-related response to interferon alfa treatment in women vs men with chronic hepatitis C virus infection. Arch Intern Med 158:177–181CrossRefPubMedGoogle Scholar
  11. 11.
    Furusyo N, Hayashi J, Ohmiya M et al (1999) Differences between interferon-alpha and -beta treatment for patients with chronic hepatitis C virus infection. Dig Dis Sci 44:608–617CrossRefPubMedGoogle Scholar
  12. 12.
    Nishiguchi S, Kuroki T, Nakatani S et al (1995) Randomised trial of effects of interferon-alpha on incidence of hepatocellular carcinoma in chronic active hepatitis C with cirrhosis. Lancet 346:1051–1055CrossRefPubMedGoogle Scholar
  13. 13.
    Yoshida H, Shiratori Y, Moriyama M et al (1999) Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT study group. Inhibition of hepatocarcinogenesis by interferon therapy. Ann Intern Med 131:174–181PubMedGoogle Scholar
  14. 14.
    Kashiwagi K, Furusyo N, Kubo N et al (2003) A prospective comparison of the effect of interferon-alpha and interferon-beta treatment in patients with chronic hepatitis C on the incidence of hepatocellular carcinoma development. J Infect Chemother 9:333–340CrossRefPubMedGoogle Scholar
  15. 15.
    Stark GR, Kerr IM, Williams BR et al (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264CrossRefPubMedGoogle Scholar
  16. 16.
    Meurs EF, Galabru J, Barber GN et al (1993) Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 90:232–236PubMedCrossRefGoogle Scholar
  17. 17.
    Yano H, Iemura A, Haramaki M et al (1999) Interferon alfa receptor expression and growth inhibition by interferon alfa in human liver cancer cell lines. Hepatology 29:1708–1717CrossRefPubMedGoogle Scholar
  18. 18.
    Murphy D, Detjen KM, Welzel M et al (2001) Interferon-alpha delays S-phase progression in human hepatocellular carcinoma cells via inhibition of specific cyclin-dependent kinases. Hepatology 33:346–356CrossRefPubMedGoogle Scholar
  19. 19.
    Takaoka A, Hayakawa S, Yanai H et al (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424:516–523CrossRefPubMedGoogle Scholar
  20. 20.
    von Hoegen P (1995) Synergistic role of type I interferons in the induction of protective cytotoxic T lymphocytes. Immunol Lett 47:157–162CrossRefPubMedGoogle Scholar
  21. 21.
    Hiroishi K, Tuting T, Lotze MT (2000) IFN-alpha-expressing tumor cells enhance generation and promote survival of tumor-specific CTLs. J Immunol 164:567–572PubMedGoogle Scholar
  22. 22.
    Biron CA, Nguyen KB, Pien GC et al (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220CrossRefPubMedGoogle Scholar
  23. 23.
    Ohzato H, Monden M, Yoshizaki K et al (1993) Systemic production of interleukin-6 following acute inflammation. Biochem Biophys Res Commun 197:1556–1562CrossRefPubMedGoogle Scholar
  24. 24.
    Kawakami Y, Hayashi J, Ueno K et al (1997) Elevation of serum soluble interleukin-2 receptor levels in patients with hepatitis C virus infection. Fukuoka Igaku Zasshi 88:274–282PubMedGoogle Scholar
  25. 25.
    Mattei F, Schiavoni G, Belardelli F et al (2001) IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 167:1179–1187PubMedGoogle Scholar
  26. 26.
    Grabstein KH, Eisenman J, Shanebeck K et al (1994) Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264:965–968PubMedCrossRefGoogle Scholar
  27. 27.
    Carson WE, Giri JG, Lindemann MJ et al (1994) Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 180:1395–1403CrossRefPubMedGoogle Scholar
  28. 28.
    Kennedy MK, Glaccum M, Brown SN et al (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780CrossRefPubMedGoogle Scholar
  29. 29.
    Sharif-Askari E, Fawaz LM, Tran P et al (2001) Interleukin 15-mediated induction of cytotoxic effector cells capable of eliminating Epstein-Barr virus-transformed/immortalized lymphocytes in culture. J Natl Cancer Inst 93:1724–1732CrossRefPubMedGoogle Scholar
  30. 30.
    Lodolce JP, Boone DL, Chai S et al (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669–676CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang X, Sun S, Hwang I et al (1998) Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8:591–599CrossRefPubMedGoogle Scholar
  32. 32.
    Liu K, Catalfamo M, Li Y et al (2002) IL-15 mimics T cell receptor crosslinking in the induction of cellular proliferation, gene expression, and cytotoxicity in CD8+ memory T cells. Proc Natl Acad Sci USA 99:6192–6197CrossRefPubMedGoogle Scholar
  33. 33.
    Hayashi J, Yoshimura E, Kishihara Y et al (1996) Hepatitis C virus RNA levels determined by branched DNA probe assay correlated with levels assessed using competitive PCR. Am J Gastroenterol 91:314–318PubMedGoogle Scholar
  34. 34.
    Strehlau J, Pavlakis M, Lipman M et al (1997) Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc Natl Acad Sci USA 94:695–700CrossRefPubMedGoogle Scholar
  35. 35.
    Smith XG, Bolton EM, Ruchatz H et al (2000) Selective blockade of IL-15 by soluble IL-15 receptor alpha-chain enhances cardiac allograft survival. J Immunol 165:3444–3450PubMedGoogle Scholar
  36. 36.
    Conti F, Frappier J, Dharancy S et al (2003) Interleukin-15 production during liver allograft rejection in humans. Transplantation 76:210–216CrossRefPubMedGoogle Scholar
  37. 37.
    McInnes IB, al-Mughales J, Field M et al (1996) The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat Med 2:175–182CrossRefPubMedGoogle Scholar
  38. 38.
    McInnes IB, Leung BP, Sturrock RD et al (1997) Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-alpha production in rheumatoid arthritis. Nat Med 3:189–195CrossRefPubMedGoogle Scholar
  39. 39.
    Lu J, Giuntoli RL, 2nd, Omiya R et al (2002) Interleukin 15 promotes antigen-independent in vitro expansion and long-term survival of antitumor cytotoxic T lymphocytes. Clin Cancer Res 8:3877–3884PubMedGoogle Scholar
  40. 40.
    Lewko WM, Smith TL, Bowman DJ et al (1995) Interleukin-15 and the growth of tumor derived activated T-cells. Cancer Biother 10:13–20PubMedGoogle Scholar
  41. 41.
    Yajima T, Nishimura H, Ishimitsu R et al (2002) Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure. J Immunol 168:1198–1203PubMedGoogle Scholar
  42. 42.
    Klebanoff CA, Finkelstein SE, Surman DR et al (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 101:1969–1974CrossRefPubMedGoogle Scholar
  43. 43.
    Fehniger TA, Cooper MA, Caligiuri MA (2002) Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 13:169–183CrossRefPubMedGoogle Scholar
  44. 44.
    Brentjens RJ, Latouche JB, Santos E et al (2003) Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 9:279–286PubMedCrossRefGoogle Scholar
  45. 45.
    Wang T, Niu G, Kortylewski M et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54CrossRefPubMedGoogle Scholar
  46. 46.
    Radaeva S, Jaruga B, Hong F et al (2002) Interferon-alpha activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes. Gastroenterology 122:1020–1034CrossRefPubMedGoogle Scholar
  47. 47.
    Azimi N, Shiramizu KM, Tagaya Y et al (2000) Viral activation of interleukin-15 (IL-15): characterization of a virus-inducible element in the IL-15 promoter region. J Virol 74:7338–7348CrossRefPubMedGoogle Scholar
  48. 48.
    Jinushi M, Takehara T, Tatsumi T et al (2003) Autocrine/paracrine IL-15 that is required for type I IFN-mediated dendritic cell expression of MHC class I-related chain A and B is impaired in hepatitis C virus infection. J Immunol 171:5423–5429PubMedGoogle Scholar
  49. 49.
    Damdinsuren B, Nagano H, Sakon M et al (2003) Interferon-beta is more potent than interferon-alpha in inhibition of human hepatocellular carcinoma cell growth when used alone and in combination with anticancer drugs. Ann Surg Oncol 10:1184–1190CrossRefPubMedGoogle Scholar
  50. 50.
    Domanski P, Nadeau OW, Platanias LC et al (1998) Differential use of the betaL subunit of the type I interferon (IFN) receptor determines signaling specificity for IFNalpha2 and IFNbeta. J Biol Chem 273:3144–3147CrossRefPubMedGoogle Scholar
  51. 51.
    Rani MR, Foster GR, Leung S et al (1996) Characterization of beta-R1, a gene that is selectively induced by interferon beta (IFN-beta) compared with IFN-alpha. J Biol Chem 271:22878–22884CrossRefPubMedGoogle Scholar
  52. 52.
    Rani MR, Gauzzi C, Pellegrini S et al (1999) Induction of beta-R1/I-TAC by interferon-beta requires catalytically active TYK2. J Biol Chem 274:1891–1897CrossRefPubMedGoogle Scholar
  53. 53.
    Yamaji K, Hayashi J, Kawakami Y et al (1998) Hepatitis C viral RNA status at two weeks of therapy predicts the eventual response. J Clin Gastroenterol 26:193–199CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Kouzaburo Yamaji
    • 1
  • Shigeki Nabeshima
    • 1
  • Masayuki Murata
    • 1
  • Yong Chong
    • 1
  • Norihiro Furusyo
    • 1
  • Hideyuki Ikematsu
    • 1
  • Jun Hayashi
    • 1
  1. 1.Department of General MedicineKyushu University HospitalFukuokaJapan

Personalised recommendations