Advertisement

Cancer Immunology, Immunotherapy

, Volume 55, Issue 5, pp 503–514 | Cite as

T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct

  • Bernd Schlereth
  • Cornelia Quadt
  • Torsten Dreier
  • Peter Kufer
  • Grit Lorenczewski
  • Nadja Prang
  • Christian Brandl
  • Sandra Lippold
  • Kathy Cobb
  • Kathleen Brasky
  • Eugen Leo
  • Ralf Bargou
  • Krishna Murthy
  • Patrick A. BaeuerleEmail author
Article

Abstract

BscCD19xCD3 is a bispecific single-chain antibody construct with exceptional cytotoxic potency in vitro and in vivo. Here, we have investigated the biological activity of bscCD19xCD3 in chimpanzee, the only animal species identified in which bscCD19xCD3 showed bispecific binding, redirected B-cell lysis and cytokine production comparable to human cells. Pharmacokinetic analysis following 2-h intravenous infusion of 0.06, 0.1 or 0.12 μg/kg of bscCD19xCD3 as part of a dose escalation study in a single female chimpanzee revealed a half-life of approximately 2 h and elimination of the bispecific antibody from circulation within approximately 8 h after the end of infusion. This short exposure to bscCD19xCD3 elicited a transient increase in serum levels of IFNγ, IL-6, IL-2, soluble CD25, and transiently upregulated expression of CD69 and MHC class II on CD8-positive cells. Cytokine release and upregulation of T-cell activation markers were not observed with vehicle controls. A multiple-dose study using 5 weekly doses of 0.1 μg/kg in two animals also showed transient cytokine release and an activation of peripheral T cells with a first-dose effect, accompanied by a transient lymphopenia. While oscillations of T-cell counts were relatively even during repeated treatments, the amplitudes of peripheral B cells declined with every infusion, which was not observed in a vehicle control animal. Our data show that bscCD19xCD3 can be safely administered to chimpanzees at dose levels that cause fully reversible T-cell activation and, despite a very short exposure time, cumulative loss of peripheral B lymphocytes. A clinical trial testing prolonged administration of bscCD19xCD3 (MT103) for improving efficacy is currently ongoing.

Keywords

Peripheral Blood Mononuclear Cell Human Serum Albumin Dose Escalation Study Total Lymphocyte Bispecific Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abbs IC, Clark M, Waldmann H, Chatenoud L, Koffman CG, and Sacks SH (1994) Sparing of first dose effect of monovalent anti-CD3 antibody used in allograft rejection is associated with diminished release of pro-inflammatory cytokines. Ther Immunol 1:325–331PubMedGoogle Scholar
  2. 2.
    Cheng JD, Babb JS, Langer C, Aamdal S, Robert F, Engelhardt LR, Fernberg O, Schiller J, Forsberg G, Alpaugh RK, Weiner LM, Rogatko A (2004) Individualized patient dosing in phase I clinical trials: the role of escalation with overdose control in PNU-214936. J Clin Oncol 22:602–609PubMedCrossRefGoogle Scholar
  3. 3.
    Chinn P, Braslawsky G, White C, Hanna N (2003) Antibody therapy of non-Hodgkin’s B-cell lymphoma. Cancer Immunol Immunother 52:257–280PubMedGoogle Scholar
  4. 4.
    De Gast GC, Van Houten AA, Haagen IA, Klein S, De Weger RA, Van Dijk A, Phillips J, Clark M, Bast BJ (1995) Clinical experience with CD3xCD19 bispecific antibodies in patients with B cell malignancies. J Hematother 4:433–437PubMedGoogle Scholar
  5. 5.
    Dreier T, Baeuerle PA, Fichtner I, Grun M, Schlereth B, Lorenczewski G, Kufer P, Lutterbuse R, Riethmuller G, Gjorstrup P, Bargou RC (2003) T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J Immunol 170:4397–4402PubMedGoogle Scholar
  6. 6.
    Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, Kufer P, Riethmuller G, Bargou R, Baeuerle PA (2002) Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 100:690–697PubMedCrossRefGoogle Scholar
  7. 7.
    Flynn JM, Byrd JC (2000) Campath-1H monoclonal antibody therapy. Curr Opin Oncol 12:574–581PubMedCrossRefGoogle Scholar
  8. 8.
    Gidlof C, Dohlsten M, Lando P, Kalland T, Sundstrom C, Totterman TH (1997) A superantigen-antibody fusion protein for T-cell immunotherapy of human B-lineage malignancies. Blood 89:2089–2097PubMedGoogle Scholar
  9. 9.
    Grillo-Lopez AJ (2003) Rituximab (Rituxan/MabThera): the first decade (1993–2003). Expert Rev Anticancer Ther 3:767–779PubMedCrossRefGoogle Scholar
  10. 10.
    Ishikawa H, Tsuyama N, Mahmoud MS, Fujii R, Abroun S, Liu S, Li FJ, Kawano MM (2002) CD19 expression and growth inhibition of tumours in human multiple myeloma. Leuk Lymphoma 43:613–616PubMedCrossRefGoogle Scholar
  11. 11.
    Leonard JP, Link BK (2002) Immunotherapy of non-Hodgkin’s lymphoma with hLL2 (epratuzumab, an anti-CD22 monoclonal antibody) and Hu1D10 (apolizumab). Semin Oncol 29:81–86PubMedCrossRefGoogle Scholar
  12. 12.
    Loffler A, Gruen M, Wuchter C, Schriever F, Kufer P, Dreier T, Hanakam F, Baeuerle PA, Bommert K, Karawajew L, Dorken B, Bargou RC (2003) Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Leukemia 17:900–909PubMedCrossRefGoogle Scholar
  13. 13.
    Loffler A, Kufer P, Lutterbuse R, Zettl F, Daniel PT, Schwenkenbecher JM, Riethmuller G, Dorken B, Bargou RC (2000) A recombinant bispecific single-chain antibody, CD19xCD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95:2098–2103PubMedGoogle Scholar
  14. 14.
    Moingeon P, Chang HC, Sayre PH, Clayton LK, Alcover A, Gardner P, and Reinherz EL (1989) The structural biology of CD2. Immunol Rev 111:111–144PubMedCrossRefGoogle Scholar
  15. 15.
    Olszewski AJ, Grossbard ML (2004) Empowering targeted therapy: lessons from rituximab. Sci STKE 2004:30CrossRefGoogle Scholar
  16. 16.
    Pandit-Taskar N, Hamlin PA, Reyes S, Larson SM, Divgi CR (2003) New strategies in radioimmunotherapy for lymphoma. Curr Oncol Rep 5:364–371PubMedCrossRefGoogle Scholar
  17. 17.
    Petrasch S, Perez-Alvarez C, Schmitz J, Kosco M, Brittinger G (1990) Antigenic phenotyping of human follicular dendritic cells isolated from nonmalignant and malignant lymphatic tissue. Eur J Immunol 20:1013–1018PubMedCrossRefGoogle Scholar
  18. 18.
    Rubin LA, Nelson DL (1990) The soluble interleukin-2 receptor: biology, function, and clinical application. Ann Intern Med 113:619–627PubMedGoogle Scholar
  19. 19.
    Sapra P, Allen TM (2002) Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 62:7190–7194PubMedGoogle Scholar
  20. 20.
    Scheuermann RH, Racila E (1995) CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 18:385–397PubMedCrossRefGoogle Scholar
  21. 21.
    Schriever F, Freedman AS, Freeman G, Messner E, Lee G, Daley J, Nadler LM (1989) Isolated human follicular dendritic cells display a unique antigenic phenotype. J Exp Med 169:2043–2058PubMedCrossRefGoogle Scholar
  22. 22.
    Totterman TH, Gidlof C, Ragnarsson L, Hogbom E, Lindeberg M, von der Lehr N, Einarsson A, Soegaard M, Kristensson K, Kalland T, Dohlsten M (1998) Targeted superantigens for immunotherapy of haematopoietic tumours. Vox Sang 74(Suppl2):483–487PubMedGoogle Scholar
  23. 23.
    Vose JM (1999) Antibody-targeted therapy for low-grade lymphoma. Semin Hematol 36:15–20PubMedGoogle Scholar
  24. 24.
    Weiner GJ, De Gast GC (1995) Bispecific monoclonal antibody therapy of B-cell malignancy. Leuk Lymphoma 16:199–207PubMedCrossRefGoogle Scholar
  25. 25.
    Wildman DE, Uddin M, Liu G, Grossman LI, Goodman M (2003) Implications of natural selection in shaping 99.4% nonsynonymous DNA identity between humans and chimpanzees: enlarging genus Homo. Proc Natl Acad Sci U S A 100:7181–7188PubMedCrossRefGoogle Scholar
  26. 26.
    Winkler U, Jensen M, Manzke O, Schulz H, Diehl V, Engert A (1999) Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood 94:2217–2224PubMedGoogle Scholar
  27. 27.
    Witzig TE (2003) Efficacy and safety of 90Y ibritumomab tiuxetan (Zevalin) radioimmunotherapy for non-Hodgkin’s lymphoma. Semin Oncol 30:11–16PubMedCrossRefGoogle Scholar
  28. 28.
    Wolf H, Freimann U, Jung G (1994) Target cell induced T cell activation with bispecific antibodies: a new concept for tumor immunotherapy. Recent Results Cancer Res 135:185–195PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Bernd Schlereth
    • 1
  • Cornelia Quadt
    • 1
    • 5
  • Torsten Dreier
    • 1
    • 4
  • Peter Kufer
    • 1
  • Grit Lorenczewski
    • 1
  • Nadja Prang
    • 1
  • Christian Brandl
    • 1
  • Sandra Lippold
    • 1
  • Kathy Cobb
    • 2
  • Kathleen Brasky
    • 2
  • Eugen Leo
    • 1
  • Ralf Bargou
    • 3
  • Krishna Murthy
    • 2
  • Patrick A. Baeuerle
    • 1
    Email author
  1. 1.Micromet AGMunichGermany
  2. 2.Southwest Foundation of Biomedical ResearchSan AntonioUSA
  3. 3.Robert-Rössle-ClinicUniversity Medical Center Charité, Humboldt University of Berlin, and Helios Kliniken BerlinBerlin-BuchGermany
  4. 4.Ablynx NVZwijnaardeBelgium
  5. 5.Oncology Business UnitNovartis AGBaselSwitzerland

Personalised recommendations