Cancer Immunology, Immunotherapy

, Volume 54, Issue 9, pp 826–836 | Cite as

Lessons to be learned from primary renal cell carcinomas: novel tumor antigens and HLA ligands for immunotherapy

  • Tobias Krüger
  • Oliver Schoor
  • Claudia Lemmel
  • Bjoern Kraemer
  • Christian Reichle
  • Jörn Dengjel
  • Toni Weinschenk
  • Margret Müller
  • Jörg Hennenlotter
  • Arnulf Stenzl
  • Hans-Georg Rammensee
  • Stefan Stevanović
Original Article


The lack of sufficient well-defined tumor-associated antigens is still a drawback on the way to a cytotoxic T-lymphocyte-based immunotherapy of renal cell carcinoma (RCC). We are trying to define a larger number of such targets by a combined approach involving HLA ligand characterization by mass spectrometry and gene expression profiling by oligonucleotide microarrays. Here, we present the results of a large-scale analysis of 13 RCC specimens. We were able to identify more than 700 peptides, mostly from self-proteins without any evident tumor association. However, some HLA ligands derived from previously known tumor antigens in RCC. In addition, gene expression profiling of tumors and a set of healthy tissues revealed novel candidate RCC-associated antigens. For several of them, we were able to characterize HLA ligands after extraction from the tumor tissue. Apart from universal RCC antigens, some proteins seem to be appropriate candidates in individual patients only. This underlines the advantage of a personalized therapeutic approach. Further analyses will contribute additional HLA ligands to this repertoire of universal as well as patient-individual tumor antigens.


Renal cell carcinoma Novel tumor antigens HLA ligands Immunotherapy 



This work was supported by the Deutsche Forschungsgemeinschaft (SFB 510 and Graduiertenkolleg 794), the European Union (LSHB-CT-2003-503231 GenomesToVaccines), and by the German Federal Ministry of Education and Research (Fö. 01KS9602) in connection with the Interdisciplinary Center of Clinical Research, Tübingen (IZKF, Project S.04.00088). We thank Lynne Yakes for critically reading the manuscript and Patricia Hrstić for perfect technical assistance.


  1. 1.
    Amatschek S, Koenig U, Auer H, Steinlein P, Pacher M, Gruenfelder A, Dekan G, Vogl S, Kubista E, Heider KH, Stratowa C, Schreiber M, Sommergruber W (2004) Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res 64:844Google Scholar
  2. 2.
    Apostolopoulos V, Karanikas V, Haurum JS, McKenzie IF (1997) Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen. J Immunol 159:5211Google Scholar
  3. 3.
    Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S (2001) Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood 97:2903CrossRefPubMedGoogle Scholar
  4. 4.
    Brossart P, Heinrich KS, Stuhler G, Behnke L, Reichardt VL, Stevanovic S, Muhm A, Rammensee HG, Kanz L, Brugger W (1999) Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 93:4309PubMedGoogle Scholar
  5. 5.
    Bui MH, Seligson D, Han KR, Pantuck AJ, Dorey FJ, Huang Y, Horvath S, Leibovich BC, Chopra S, Liao SY, Stanbridge E, Lerman MI, Palotie A, Figlin RA, Belldegrun AS (2003) Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 9:802PubMedGoogle Scholar
  6. 6.
    Cao Y, Dave KB, Doan TP, Prescott SM (2001) Fatty acid CoA ligase 4 is up-regulated in colon adenocarcinoma. Cancer Res 61:8429Google Scholar
  7. 7.
    Celis E, Tsai V, Crimi C, DeMars R, Wentworth PA, Chesnut RW, Grey HM, Sette A, Serra HM (1994) Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci USA 91:2105Google Scholar
  8. 8.
    Cheung CW, Vesey DA, Nicol DL, Johnson DW (2004) The roles of IGF-I and IGFBP-3 in the regulation of proximal tubule, and renal cell carcinoma cell proliferation. Kidney Int 65:1272CrossRefGoogle Scholar
  9. 9.
    Divgi CR, Bander NH, Scott AM, O’Donoghue JA, Sgouros G, Welt S, Finn RD, Morrissey F, Capitelli P, Williams JM, Deland D, Nakhre A, Oosterwijk E, Gulec S, Graham MC, Larson SM, Old LJ (1998) Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin Cancer Res 4:2729Google Scholar
  10. 10.
    Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290CrossRefPubMedGoogle Scholar
  11. 11.
    Flad T, Spengler B, Kalbacher H, Brossart P, Baier D, Kaufmann R, Bold P, Metzger S, Bluggel M, Meyer HE, Kurz B, Muller CA (1998) Direct identification of major histocompatibility complex class I-bound tumor-associated peptide antigens of a renal carcinoma cell line by a novel mass spectrometric method. Cancer Res 58:5803Google Scholar
  12. 12.
    Fleischhauer K, Tanzarella S, Russo V, Sensi ML, van der BP, Bordignon C, Traversari C (1997) Functional heterogeneity of HLA-A*02 subtypes revealed by presentation of a MAGE-3-encoded peptide to cytotoxic T cell clones. J Immunol 159:2513Google Scholar
  13. 13.
    Furuya M, Nishiyama M, Kimura S, Suyama T, Naya Y, Ito H, Nikaido T, Ishikura H (2004) Expression of regulator of G protein signalling protein 5 (RGS5) in the tumour vasculature of human renal cell carcinoma. J Pathol 203:551CrossRefGoogle Scholar
  14. 14.
    Gaugler B, Brouwenstijn N, Vantomme V, Szikora JP, Van der Spek CW, Patard JJ, Boon T, Schrier P, Van den Eynde BJ (1996) A new gene coding for an antigen recognized by autologous cytolytic T lymphocytes on a human renal carcinoma. Immunogenetics 44:323CrossRefPubMedGoogle Scholar
  15. 15.
    Grabmaier K, Vissers JL, De Weijert MC, Oosterwijk-Wakka JC, Van Bokhoven A, Brakenhoff RH, Noessner E, Mulders PA, Merkx G, Figdor CG, Adema GJ, Oosterwijk E (2000) Molecular cloning and immunogenicity of renal cell carcinoma-associated antigen G250. Int J Cancer 85:865CrossRefGoogle Scholar
  16. 16.
    Herman J, van der Bruggen P, Luescher IF, Mandruzzato S, Romero P, Thonnard J, Fleischhauer K, Boon T, Coulie PG (1996) A peptide encoded by the human MAGE3 gene and presented by HLA-B44 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE3. Immunogenetics 43:377CrossRefPubMedGoogle Scholar
  17. 17.
    Hernandez JM, Bui MH, Han KR, Mukouyama H, Freitas DG, Nguyen D, Caliliw R, Shintaku PI, Paik SH, Tso CL, Figlin RA, Belldegrun AS (2003) Novel kidney cancer immunotherapy based on the granulocyte-macrophage colony-stimulating factor and carbonic anhydrase IX fusion gene. Clin Cancer Res 9:1906Google Scholar
  18. 18.
    Hintz RL, Bock S, Thorsson AV, Bovens J, Powell DR, Jakse G, Petrides PE (1991) Expression of the insulin like growth factor-binding protein 3 (IGFBP-3) gene is increased in human renal carcinomas. J Urol 146:1160Google Scholar
  19. 19.
    Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, De Smet C, Chambost H, Vitale M, Moretta A, Boon T, Coulie PG (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6:199CrossRefPubMedGoogle Scholar
  20. 20.
    Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905Google Scholar
  21. 21.
    Jager E, Chen YT, Drijfhout JW, Karbach J, Ringhoffer M, Jager D, Arand M, Wada H, Noguchi Y, Stockert E, Old LJ, Knuth A (1998) Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 187:265CrossRefPubMedGoogle Scholar
  22. 22.
    Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics, 2004. CA Cancer J Clin 54:8PubMedGoogle Scholar
  23. 23.
    Jongmans W, van den Oudenalder K, Tiemessen DM, Molkenboer J, Willemsen R, Mulders PF, Oosterwijk E (2003) Targeting of adenovirus to human renal cell carcinoma cells. Urology 62:559CrossRefGoogle Scholar
  24. 24.
    Kawashima I, Hudson SJ, Tsai V, Southwood S, Takesako K, Appella E, Sette A, Celis E (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1Google Scholar
  25. 25.
    Kessler JH, Beekman NJ, Bres-Vloemans SA, Verdijk P, van Veelen PA, Kloosterman-Joosten AM, Vissers DC, ten Bosch GJ, Kester MG, Sijts A, Wouter DJ, Ossendorp F, Offringa R, Melief CJ (2001) Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 193:73CrossRefPubMedGoogle Scholar
  26. 26.
    Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos K, Pastorek J, Wykoff CC, Gatter KC, Harris AL (2001) Hypoxia-regulated carbonic anhydrase-9 (CA9) relates to poor vascularization and resistance of squamous cell head and neck cancer to chemoradiotherapy. Clin Cancer Res 7:3399Google Scholar
  27. 27.
    Kranenborg MH, Boerman OC, Oosterwijk-Wakka JC, De Weijert MC, Corstens FH, Oosterwijk E (1995) Development and characterization of anti-renal cell carcinoma x antichelate bispecific monoclonal antibodies for two-phase targeting of renal cell carcinoma. Cancer Res 55:5864sGoogle Scholar
  28. 28.
    Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker HD, Rammensee HG, Stevanovic S (2004) Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat Biotechnol 22:450CrossRefGoogle Scholar
  29. 29.
    Lokich J (1997) Spontaneous regression of metastatic renal cancer. Case report and literature review. Am J Clin Oncol 20:416CrossRefGoogle Scholar
  30. 30.
    Luckey CJ, Marto JA, Partridge M, Hall E, White FM, Lippolis JD, Shabanowitz J, Hunt DF, Engelhard VH (2001) Differences in the expression of human class I MHC alleles and their associated peptides in the presence of proteasome inhibitors. J Immunol 167:1212Google Scholar
  31. 31.
    Oiso M, Eura M, Katsura F, Takiguchi M, Sobao Y, Masuyama K, Nakashima M, Itoh K, Ishikawa T (1999) A newly identified MAGE-3-derived epitope recognized by HLA-A24-restricted cytotoxic T lymphocytes. Int J Cancer 81:387CrossRefPubMedGoogle Scholar
  32. 32.
    Oosterwijk E, Bander NH, Divgi CR, Welt S, Wakka JC, Finn RD, Carswell EA, Larson SM, Warnaar SO, Fleuren GJ (1993) Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J Clin Oncol 11:738PubMedGoogle Scholar
  33. 33.
    Oosterwijk E, Debruyne FM (1995) Radiolabeled monoclonal antibody G250 in renal-cell carcinoma. World J Urol 13:186CrossRefGoogle Scholar
  34. 34.
    Oosterwijk E, Debruyne FM, Schalken JA (1995) The use of monoclonal antibody G250 in the therapy of renal-cell carcinoma. Semin Oncol 22:34Google Scholar
  35. 35.
    Oosterwijk E, Ruiter DJ, Hoedemaeker PJ, Pauwels EK, Jonas U, Zwartendijk J, Warnaar SO (1986) Monoclonal antibody G 250 recognizes a determinant present in renal-cell carcinoma and absent from normal kidney. Int J Cancer 38:489Google Scholar
  36. 36.
    Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA (2003) Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res 9:4641Google Scholar
  37. 37.
    Pascolo S, Schirle M, Guckel B, Dumrese T, Stumm S, Kayser S, Moris A, Wallwiener D, Rammensee HG, Stevanovic S (2001) A MAGE-A1 HLA-A A*0201 epitope identified by mass spectrometry. Cancer Res 61:4072PubMedGoogle Scholar
  38. 38.
    Powell WC, Knox JD, Navre M, Grogan TM, Kittelson J, Nagle RB, Bowden GT (1993) Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res 53:417Google Scholar
  39. 39.
    Rammensee HG, Weinschenk T, Gouttefangeas C, Stevanovic S (2002) Towards patient-specific tumor antigen selection for vaccination. Immunol Rev 188:164CrossRefPubMedGoogle Scholar
  40. 40.
    Renkvist N, Castelli C, Robbins PF, Parmiani G (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50:3CrossRefPubMedGoogle Scholar
  41. 41.
    Rudolph-Owen LA, Chan R, Muller WJ, Matrisian LM (1998) The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res 58:5500Google Scholar
  42. 42.
    Sadovnikova E, Jopling LA, Soo KS, Stauss HJ (1998) Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol 28:193CrossRefGoogle Scholar
  43. 43.
    Schag K, Schmidt SM, Muller MR, Weinschenk T, Appel S, Weck MM, Grunebach F, Stevanovic S, Rammensee HG, Brossart P (2004) Identification of C-met oncogene as a broadly expressed tumor-associated antigen recognized by cytotoxic T-lymphocytes. Clin Cancer Res 10:3658Google Scholar
  44. 44.
    Schirle M, Keilholz W, Weber B, Gouttefangeas C, Dumrese T, Becker HD, Stevanovic S, Rammensee HG (2000) Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol 30:2216PubMedGoogle Scholar
  45. 45.
    Schmidt SM, Schag K, Muller MR, Weinschenk T, Appel S, Schoor O, Weck MM, Grunebach F, Kanz L, Stevanovic S, Rammensee HG, Brossart P (2004) Induction of adipophilin-specific cytotoxic T lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res 64:1164PubMedGoogle Scholar
  46. 46.
    Schmitz M, Diestelkoetter P, Weigle B, Schmachtenberg F, Stevanovic S, Ockert D, Rammensee HG, Rieber EP (2000) Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 60:4845PubMedGoogle Scholar
  47. 47.
    Schultz ES, Zhang Y, Knowles R, Tine J, Traversari C, Boon T, van der Bruggen P (2001) A MAGE-3 peptide recognized on HLA-B35 and HLA-A1 by cytolytic T lymphocytes. Tissue Antigens 57:103CrossRefGoogle Scholar
  48. 48.
    Span PN, Bussink J, Manders P, Beex LV, Sweep CG (2003) Carbonic anhydrase-9 expression levels and prognosis in human breast cancer: association with treatment outcome. Br J Cancer 89:271CrossRefPubMedGoogle Scholar
  49. 49.
    Sung YK, Hwang SY, Park MK, Bae HI, Kim WH, Kim JC, Kim M (2003) Fatty acid-CoA ligase 4 is overexpressed in human hepatocellular carcinoma. Cancer Sci 94:421Google Scholar
  50. 50.
    Swinson DE, Jones JL, Richardson D, Wykoff C, Turley H, Pastorek J, Taub N, Harris AL, O’Byrne KJ (2003) Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in non-small-cell lung cancer. J Clin Oncol 21:473CrossRefGoogle Scholar
  51. 51.
    Tanaka F, Fujie T, Tahara K, Mori M, Takesako K, Sette A, Celis E, Akiyoshi T (1997) Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res 57:4465PubMedGoogle Scholar
  52. 52.
    van der BP, Bastin J, Gajewski T, Coulie PG, Boel P, De Smet C, Traversari C, Townsend A, Boon T (1994) A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 24:3038PubMedGoogle Scholar
  53. 53.
    Vissers JL, De Vries IJ, Schreurs MW, Engelen LP, Oosterwijk E, Figdor CG, Adema GJ (1999) The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitope recognized by cytotoxic T lymphocytes. Cancer Res 59:5554PubMedGoogle Scholar
  54. 54.
    Vonderheide RH, Anderson KS, Hahn WC, Butler MO, Schultze JL, Nadler LM (2001) Characterization of HLA-A3-restricted cytotoxic T lymphocytes reactive against the widely expressed tumor antigen telomerase. Clin Cancer Res 7:3343PubMedGoogle Scholar
  55. 55.
    Vonderheide RH, Hahn WC, Schultze JL, Nadler LM (1999) The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10:673CrossRefPubMedGoogle Scholar
  56. 56.
    Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG (2002) Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res 62:5818Google Scholar
  57. 57.
    Wilson CL, Heppner KJ, Labosky PA, Hogan BL, Matrisian LM (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci USA 94:1402CrossRefGoogle Scholar
  58. 58.
    Young AN, Amin MB, Moreno CS, Lim SD, Cohen C, Petros JA, Marshall FF, Neish AS (2001) Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol 158:1639Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Tobias Krüger
    • 1
  • Oliver Schoor
    • 1
  • Claudia Lemmel
    • 1
  • Bjoern Kraemer
    • 1
  • Christian Reichle
    • 1
  • Jörn Dengjel
    • 1
  • Toni Weinschenk
    • 1
  • Margret Müller
    • 1
  • Jörg Hennenlotter
    • 2
  • Arnulf Stenzl
    • 2
  • Hans-Georg Rammensee
    • 1
  • Stefan Stevanović
    • 1
  1. 1.Department of Immunology, Institute for Cell BiologyUniversity of TübingenTübingenGermany
  2. 2.Department of UrologyUniversity of TübingenTübingenGermany

Personalised recommendations