Cancer Immunology, Immunotherapy

, Volume 54, Issue 8, pp 769–780 | Cite as

Semi-mature IL-12 secreting dendritic cells present exogenous antigen to trigger cytolytic immune responses

  • Thomas Felzmann
  • Katharina Gabriele Hüttner
  • Sabine Konstanze Breuer
  • Doris Wimmer
  • Gabriele Ressmann
  • Dagmar Wagner
  • Petra Paul
  • Manfred Lehner
  • Andreas Heitger
  • Wolfgang Holter
Original Article


Dendritic cells (DC) are candidates for antigen-presenting cells that present exogenous antigen on MHC class I molecules to cytotoxic T lymphocytes (CTL), a process referred to as cross-priming. We triggered interleukin (IL)-12 release from DC, which was limited to the first day after maturation induction, by a combination of lipopolysaccharide (LPS) and interferon (IFN)-γ. To stimulate T lymphocytes, we used soluble protein derived from lysis of Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCL) or ovalbumin loaded onto DC. Co-culture was initiated 2–6 or 48 h after maturation corresponding to “semi-mature” actively IL-12-secreting type 1 DC (sm-DC1) or a “fully mature” DC1 that had lost the ability to release IL-12 (fm-DC1), respectively. IL-12-secreting sm-DC1 but not fm-DC1 efficiently triggered cytolytic activity in autologous T lymphocytes. The combination of IL-1β, IL-6, TNF-α, and prostaglandin E2 generated type 2 DC that did not secrete IL-12 (DC2) and could not prime T-cell cytolytic activity. However, supplementation of cultures using DC2 with IL-12 resulted in CTL activity while the presence of anti-IL-12 monoclonal antibodies in cultures using IL-12 secreting sm-DC1 suppressed CTL activity. Thus, actively IL-12-secreting sm-DC1 are necessary and sufficient for the antigen-specific expansion of CTL in response to exogenously provided soluble antigen.


IL-12 Dendritic cells Antigene Immune response 



This work was supported by numerous private donations to the Children’s Cancer Research Institute, Vienna, Austria that partly funded this study, and by grants from the Austrian Industrial Research Promotion Fund (Forschungsförderungsfond der Gewerblichen Wirtschaft, Projektnummer 804445) and from the Vienna Business Agency (Wiener Wirtschaftsförderungsfond).


  1. 1.
    Ackerman AL, Cresswell P (2004) Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 5:678CrossRefGoogle Scholar
  2. 2.
    Albert ML, Sauter B, Bhardwaj N (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86CrossRefPubMedGoogle Scholar
  3. 3.
    Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393:478CrossRefGoogle Scholar
  4. 4.
    Bevan MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143:1283CrossRefPubMedGoogle Scholar
  5. 5.
    Bianchi R, Grohmann U, Vacca C, Belladonna ML, Fioretti MC, Puccetti P (1999) Autocrine IL-12 is involved in dendritic cell modulation via CD40 ligation. J Immunol 163:2517Google Scholar
  6. 6.
    Blake N, Haigh T, Shaka’a G, Croom-Carter D, Rickinson A (2000) The importance of exogenous antigen in priming the human CD8+ T cell response: lessons from the EBV nuclear antigen EBNA1. J Immunol 2000:7078Google Scholar
  7. 7.
    Blankenstein T, Schuler T (2002) Cross-priming versus cross-tolerance: are two signals enough? Trends Immunol 23:171CrossRefGoogle Scholar
  8. 8.
    Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184:747CrossRefGoogle Scholar
  9. 9.
    Cho HJ, Takabayashi K, Cheng PM, Nguyen MD, Corr M, Tuck S, Raz E (2000) Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 18:509Google Scholar
  10. 10.
    denHaan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685CrossRefGoogle Scholar
  11. 11.
    Felzmann T, Witt V, Wimmer D, Ressmann G, Wagner D, Paul P, Huttner K, Fritsch G (2003) Monocyte enrichment from leukapharesis products for the generation of DCs by plastic adherence, or by positive or negative selection. Cytotherapy 5:391CrossRefGoogle Scholar
  12. 12.
    Ferlazzo G, Semino C, Spaggiari GM, Meta M, Mingari MC, Melioli G (2000) Dendritic cells efficiently cross-prime HLA class I-restricted cytolytic T lymphocytes when pulsed with both apoptotic and necrotic cells but not with soluble cell-derived lysates. Int Immunol 12:1741CrossRefPubMedGoogle Scholar
  13. 13.
    Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S (2003) ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425:397CrossRefPubMedGoogle Scholar
  14. 14.
    Hamilton SE, Tvinnereim AR, Harty JT (2001) Listeria monocytogenes infection overcomes the requirement for CD40 ligand in exogenous antigen presentation to CD8(+) T cells. J Immunol 167:5603Google Scholar
  15. 15.
    Herr W, Ranieri E, Olson W, Zarour H, Gesualdo L, Storkus WJ (2000) Mature dendritic cells pulsed with freeze-thaw cell lysates define an effective in vitro vaccine designed to elicit EBV-specific CD4+ and CD8+ T lymphocyte responses. Blood 96:1857PubMedGoogle Scholar
  16. 16.
    Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, Laplante A, Princiotta MF, Thibault P, Sacks D, Desjardins M (2003) Phagosomes are competent organelles for antigen cross-presentation. Nature 425:402CrossRefPubMedGoogle Scholar
  17. 17.
    Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135Google Scholar
  18. 18.
    Kaiser A, Bercovici N, Abastado JP, Nardin A (2003) Naive CD8+ T cell recruitment and proliferation are dependent on stage of dendritic cell maturation. Eur J Immunol 33:162CrossRefGoogle Scholar
  19. 19.
    Kalinski P, Hilkens CM, Snijders A, Snijdewint FG, Kapsenberg ML (1997) IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J Immunol 159:28Google Scholar
  20. 20.
    Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML (1998) Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 161:2804Google Scholar
  21. 21.
    Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML (1999) T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20:561CrossRefGoogle Scholar
  22. 22.
    Koch F, Stanzl U, Jennewein P, Janke K, Heufler C, Kampgen E, Romani N, Schuler G (1996) High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med 184:741CrossRefGoogle Scholar
  23. 23.
    Kurts C, Kosaka H, Carbone FR, Miller JF, Heath WR (1997) Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med 186:239CrossRefGoogle Scholar
  24. 24.
    Langenkamp A, Messi M, Lanzavecchia A, Sallusto F (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1:3116CrossRefGoogle Scholar
  25. 25.
    Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, Gewert D, Borrow P, Tough DF (2003) Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol 4:1009CrossRefGoogle Scholar
  26. 26.
    Lefrancois L, Altman JD, Williams K, Olson S (2000) Soluble antigen and CD40 triggering are sufficient to induce primary and memory cytotoxic T cells. J Immunol 164:725Google Scholar
  27. 27.
    Mazzaccaro RJ, Gedde M, Jensen ER, van Santen HM, Ploegh HL, Rock KL, Bloom BR (1996) Major histocompatibility class I presentation of soluble antigen facilitated by Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 93:11786CrossRefGoogle Scholar
  28. 28.
    Melief CJ (2003) Mini-review: regulation of cytotoxic T lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming? Eur J Immunol 33:2645CrossRefGoogle Scholar
  29. 29.
    Mueller SN, Jones CM, Smith CM, Heath WR, Carbone FR (2002) Rapid cytotoxic T lymphocyte activation occurs in the draining lymph nodes after cutaneous herpes simplex virus infection as a result of early antigen presentation and not the presence of virus. J Exp Med 195:651CrossRefPubMedGoogle Scholar
  30. 30.
    Ridge JP, Di-Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474CrossRefPubMedGoogle Scholar
  31. 31.
    Rock KL, York IA, Goldberg AL (2004) Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 5:670CrossRefGoogle Scholar
  32. 32.
    Schoenberger SP, Toes RE, van-der-Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480CrossRefPubMedGoogle Scholar
  33. 33.
    Sigal LJ, Crotty S, Andino R, Rock KL (1999) Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398:77CrossRefGoogle Scholar
  34. 34.
    Simmons CP, Mastroeni P, Fowler R, Ghaem-maghami M, Lycke N, Pizza M, Rappuoli R, Dougan G (1999) MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. J Immunol 163:6502PubMedGoogle Scholar
  35. 35.
    Snijders A, Kalinski P, Hilkens CM, Kapsenberg ML (1998) High-level IL-12 production by human dendritic cells requires two signals. Int Immunol 10:1593CrossRefPubMedGoogle Scholar
  36. 36.
    Subklewe M, Paludan C, Tsang ML, Mahnke K, Steinman RM, Munz C (2001) Dendritic cells cross-present latency gene products from Epstein-Barr virus-transformed B cells and expand tumor-reactive CD8+ killer T cells. J Exp Med 193:405CrossRefGoogle Scholar
  37. 37.
    Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133CrossRefPubMedGoogle Scholar
  38. 38.
    Watts C (2004) The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat Immunol 5:685CrossRefGoogle Scholar
  39. 39.
    Wheatley GH III, McKinnon KP, Iacobucci M, Mahon S, Gelber C, Lyerly HK (1998) Dendritic cells improve the generation of Epstein-Barr virus-specific cytotoxic T lymphocytes for the treatment of posttransplantation lymphoma. Surgery 124:171CrossRefGoogle Scholar
  40. 40.
    Whiteside T, Odoux C (2004) Dendritic cell biology and cancer therapy. Cancer Immunol Immunother 53:240CrossRefPubMedGoogle Scholar
  41. 41.
    Wilson SB, Delovitch TL (2003) Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 3:211CrossRefGoogle Scholar
  42. 42.
    Zinkernagel RM (2002) On cross-priming of MHC class I-specific CTL: rule or exception? Eur J Immunol 32:2385CrossRefPubMedGoogle Scholar
  43. 43.
    Hüttner KG, Breuer SK, Paul P, Majdic O, Heitger A, Felzmann T (2005) Generation of potent anti-tumor immunity in mice by interleukin-12-secreting dendritic cells. Cancer Immunol Immunother 54:67CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Thomas Felzmann
    • 1
  • Katharina Gabriele Hüttner
    • 1
  • Sabine Konstanze Breuer
    • 1
  • Doris Wimmer
    • 1
  • Gabriele Ressmann
    • 1
  • Dagmar Wagner
    • 1
  • Petra Paul
    • 1
  • Manfred Lehner
    • 2
  • Andreas Heitger
    • 1
  • Wolfgang Holter
    • 2
  1. 1.Children’s Cancer Research InstituteSt. Anna Children’s HospitalViennaAustria
  2. 2.Department of PediatricsUniversity of ErlangenErlangenGermany

Personalised recommendations