Cancer Immunology, Immunotherapy

, Volume 54, Issue 5, pp 453–467 | Cite as

A phase I vaccination study with tyrosinase in patients with stage II melanoma using recombinant modified vaccinia virus Ankara (MVA-hTyr)

  • Ralf G. Meyer
  • Cedrik M. Britten
  • Ulrike Siepmann
  • Barbara Petzold
  • Tolga A. Sagban
  • Hans A. Lehr
  • Bernd Weigle
  • Marc Schmitz
  • Luis Mateo
  • Burkhard Schmidt
  • Helga Bernhard
  • Thilo Jakob
  • Rüdiger Hein
  • Gerold Schuler
  • Beatrice Schuler-Thurner
  • Stephan N. Wagner
  • Ingo Drexler
  • Gerd Sutter
  • Nathaly Arndtz
  • Paul Chaplin
  • Jost Metz
  • Alexander Enk
  • Christoph Huber
  • Thomas WölfelEmail author
Original Article


A significant percentage of patients with stage II melanomas suffer a relapse after surgery and therefore need the development of adjuvant therapies. In the study reported here, safety and immunological response were analyzed after vaccination in an adjuvant setting with recombinant modified vaccinia virus Ankara carrying the cDNA for human tyrosinase (MVA-hTyr). A total of 20 patients were included and vaccinated three times at 4-week intervals with 5×108 IU of MVA-hTyr each time. The responses to the viral vector, to known HLA class I–restricted tyrosinase peptides, and to dendritic cells transfected with tyrosinase mRNA, were investigated by ELISpot assay on both ex vivo T cells and on T cells stimulated in vitro prior to testing. The delivery of MVA-hTyr was safe and did not cause any side effects above grade 2. A strong response to the viral vector was achieved, indicated by an increase in the frequency of MVA-specific CD4+ and CD8+ T cells and an increase in virus-specific antibody titers. However, no tyrosinase-specific T-cell or antibody response was observed with MVA-hTyr in any of the vaccinated patients. Although MVA-hTyr provides a safe and effective antigen-delivery system, it does not elicit a measurable immune response to its transgene product in patients with stage II melanoma after repeated combined intradermal and subcutaneous vaccination. We presume that modification of the antigen and/or prime-boost vaccination applying different approaches to antigen delivery may be required to induce an effective tyrosinase-specific immune response.


ELISpot Melanoma MVA Phase I Tyrosinase Vaccination 



American Joint Committee on Cancer


Antigen-presenting cell


Bavarian Nordic


Chicken embryo fibroblast


Cytotoxic T lymphocyte


Enzyme-linked immunosorbent assay


Enzyme-linked immunosorbent spot






Melanoma-associated antigen


Melanosomal differentiation antigen


Modified vaccinia virus Ankara


Peripheral blood mononuclear cell


Unique patient number



This study is an investigator-initiated study sponsored by Bavarian Nordic GmbH, Martinsried, Germany. The data management, protocol review, monitoring, and quality control was performed by Harrison Clinical Research, München, Germany. Immunological response analyses were performed at the Tumor-Vaccination Center, Mainz, Germany, that is supported by grant 70-2427-HuI from Deutsche Krebshilfe. Ralf G. Meyer was supported by grant 8312-38 62 61/439 from Stiftung Innovation Rheinland Pfalz, and T.W. was supported by a grant from Deutsche Forschungsgemeinschaft (SFB 432/A1). The technical assistance of Andrea Gstöttner and Caroline Eberhardt and the work of the study nurses Ilse El-Kholy and Patricia Meinhardt are gratefully acknowledged.


  1. 1.
    Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res 61:6451PubMedGoogle Scholar
  2. 2.
    Bellone M, Cantarella D, Castiglioni P, Crosti MC, Ronchetti A, Moro M, Garancini MP, Casorati G, Dellabona P (2000) Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. J Immunol 165:2651Google Scholar
  3. 3.
    Brichard V, Van Pel A, Wölfel T, Wölfel C, De Plaen E, Lethe B, Coulie P, Boon T (1993) The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 178:489CrossRefPubMedGoogle Scholar
  4. 4.
    Britten CM, Meyer RG, Kreer T, Drexler I, Wölfel T, Herr W (2002) The use of HLA-A*0201-transfected K562 as standard antigen-presenting cells for CD8+ T lymphocytes in IFN-g ELISPOT assays. J Immunol Methods 259:95Google Scholar
  5. 5.
    Britten CM, Meyer RG, Frankenberg N, Huber C, Wölfel T (2004) The use of clonal mRNA as an antigenic format for the detection of antigen-specific T lymphocytes in IFN-gamma ELISPOT assays. J Immunol Methods 287:125CrossRefPubMedGoogle Scholar
  6. 6.
    Busch DH, Pilip IM, Vijh S, Pamer EG (1998) Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8:353CrossRefPubMedGoogle Scholar
  7. 7.
    Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, Steven N, McMichael AJ, Rickinson AB (1998) Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 187:1395CrossRefPubMedGoogle Scholar
  8. 8.
    Conry RM, Khazaeli MB, Saleh MN, Allen KO, Barlow DL, Moore SE, Craig D, Arani RB, Schlom J, LoBuglio AF (1999) Phase I trial of a recombinant vaccinia virus encoding carcinoembryonic antigen in metastatic adenocarcinoma: comparison of intradermal versus subcutaneous administration. Clin Cancer Res 5:2330PubMedGoogle Scholar
  9. 9.
    Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, Dorval T, Brichard V, Boon T (2001) A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci U S A 98:10290Google Scholar
  10. 10.
    Derby MA, Alexander-Miller MA, Tse R, Berzofsky JA (2001) High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL. J Immunol 166:1690Google Scholar
  11. 11.
    Diamond DJ, York J, Sun JY, Wright CL, Forman SJ (1997) Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection. Blood 90:1751PubMedGoogle Scholar
  12. 12.
    DiBrino M, Tsuchida T, Turner RV, Parker KC, Coligan JE, Biddison WE (1993) HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 151:5930Google Scholar
  13. 13.
    Drexler I, Antunes E, Schmitz M, Wölfel T, Huber C, Erfle V, Rieber P, Theobald M, Sutter G (1999) Modified vaccinia virus Ankara for delivery of human tyrosinase as melanoma-associated antigen: induction of tyrosinase- and melanoma-specific human leukocyte antigen A*0201-restricted cytotoxic T cells in vitro and in vivo. Cancer Res 59:4955PubMedGoogle Scholar
  14. 14.
    Duhra P, Ilchyshyn A (1991) Prolonged survival in metastatic malignant melanoma associated with vitiligo. Clin Exp Dermatol 16:303PubMedGoogle Scholar
  15. 15.
    Engelmayer J, Larsson M, Subklewe M, Chahroudi A, Cox WI, Steinman RM, Bhardwaj N (1999) Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163:6762Google Scholar
  16. 16.
    Ennis FA, Cruz J, Demkowicz WE Jr, Rothman AL, McClain DJ (2002) Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-gamma-producing T cells after smallpox vaccination. J Infect Dis 185:1657CrossRefPubMedGoogle Scholar
  17. 17.
    Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181:2109CrossRefPubMedGoogle Scholar
  18. 18.
    Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9:1131CrossRefPubMedGoogle Scholar
  19. 19.
    Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409CrossRefPubMedGoogle Scholar
  20. 20.
    Henson DE, Ries L, Shambaugh EM (1992) Survival results depend on the staging system. Semin Surg Oncol 8:57PubMedGoogle Scholar
  21. 21.
    Herr W, Protzer U, Lohse AW, Gerken G, Meyer zum Buschenfelde KH, Wölfel T (1998) Quantification of CD8+ T lymphocytes responsive to human immunodeficiency virus (HIV) peptide antigens in HIV-infected patients and seronegative persons at high risk for recent HIV exposure. J Infect Dis 178:260PubMedGoogle Scholar
  22. 22.
    Jäger E, Ringhoffer M, Arand M, Karbach J, Jager D, Ilsemann C, Hagedorn M, Oesch F, Knuth A (1996) Cytolytic T cell reactivity against melanoma-associated differentiation antigens in peripheral blood of melanoma patients and healthy individuals. Melanoma Res 6:419PubMedGoogle Scholar
  23. 23.
    Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ (2003) Cancer Statistics, 2003. CA Cancer J Clin 53:5PubMedGoogle Scholar
  24. 24.
    Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135Google Scholar
  25. 25.
    Kang X, Kawakami Y, el Gamil M, Wang R, Sakaguchi K, Yannelli JR, Appella E, Rosenberg SA, Robbins PF (1995) Identification of a tyrosinase epitope recognized by HLA-A24-restricted, tumor-infiltrating lymphocytes. J Immunol 155:1343PubMedGoogle Scholar
  26. 26.
    Kawakami Y, Robbins PF, Wang X, Tupesis JP, Parkhurst MR, Kang X, Sakaguchi K, Appella E, Rosenberg SA (1998) Identification of new melanoma epitopes on melanosomal proteins recognized by tumor infiltrating T lymphocytes restricted by HLA-A1, -A2, and -A3 alleles. J Immunol 161:6985PubMedGoogle Scholar
  27. 27.
    Kemp EH, Waterman EA, Gawkrodger DJ, Watson PF, Weetman AP (1999) Identification of epitopes on tyrosinase which are recognized by autoantibodies from patients with vitiligo. J Invest Dermatol 113:267CrossRefPubMedGoogle Scholar
  28. 28.
    Kittlesen DJ, Thompson LW, Gulden PH, Skipper JC, Colella TA, Shabanowitz J, Hunt DF, Engelhard VH, Slingluff CL Jr, Shabanowitz JA (1998) Human melanoma patients recognize an HLA-A1-restricted CTL epitope from tyrosinase containing two cysteine residues: implications for tumor vaccine development. J Immunol 160:2099PubMedGoogle Scholar
  29. 29.
    Lau R, Wang F, Jeffery G, Marty V, Kuniyoshi J, Bade E, Ryback ME, Weber J (2001) Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother 24:66Google Scholar
  30. 30.
    Legha SS, Ring S, Eton O, Bedikian A, Buzaid AC, Plager C, Papadopoulos N (1998) Development of a biochemotherapy regimen with concurrent administration of cisplatin, vinblastine, dacarbazine, interferon alfa, and interleukin-2 for patients with metastatic melanoma. J Clin Oncol 16:1752PubMedGoogle Scholar
  31. 31.
    Lehr HA, Mankoff DA, Corwin D, Santeusinio G, Gown AM (1997) Application of Photoshop-based image analysis to quantification of hormone receptor expression in breast cancer. J Histochem Cytochem 45:1558Google Scholar
  32. 32.
    Lehr HA, van der Loos CM, Teeling P, Gown AM (1999) Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis. J Histochem Cytochem 47:119PubMedGoogle Scholar
  33. 33.
    Lewis JJ, Janetzki S, Schaed S, Panageas KS, Wang S, Williams L, Meyers M, Butterworth L, Livingston PO, Chapman PB, Houghton AN (2000) Evaluation of CD8(+) T-cell frequencies by the Elispot assay in healthy individuals and in patients with metastatic melanoma immunized with tyrosinase peptide. Int J Cancer 87:391CrossRefPubMedGoogle Scholar
  34. 34.
    Marchand M, van Baren N, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De Greve J, Atzpodien J, Brasseur F, Coulie PG, van der Bruggen P, Boon T (1999) Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 80:219CrossRefPubMedGoogle Scholar
  35. 35.
    Mayr A, Stickl H, Muller HK, Danner K, Singer H (1978) The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author’s transl). Zentralbl Bakteriol B 167:375PubMedGoogle Scholar
  36. 36.
    McConkey SJ, Reece WH, Moorthy VS, Webster D, Dunachie S, Butcher G, Vuola J. M, Blanchard TJ, Gothard P, Watkins K, Hannan CM, Everaere S, Brown K, Kester K E, Cummings J, Williams J, Heppner DG, Pathan A, Flanagan K, Arulanantham N, Roberts MT, Roy M, Smith GL, Schneider J, Peto T, Sinden RE, Gilbert SC, Hill AV (2003) Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med 9:729CrossRefPubMedGoogle Scholar
  37. 37.
    Mullins DW, Bullock TN, Colella TA, Robila VV, Engelhard VH (2001) Immune responses to the HLA-A*0201-restricted epitopes of tyrosinase and glycoprotein 100 enable control of melanoma outgrowth in HLA-A*0201-transgenic mice. J Immunol 167:4853Google Scholar
  38. 38.
    Nagorsen D, Panelli M, Dudley ME, Finkelstein SE, Rosenberg SA, Marincola FM (2003) Biased epitope selection by recombinant vaccinia-virus (rVV)-infected mature or immature dendritic cells. Gene Ther 10:1754CrossRefPubMedGoogle Scholar
  39. 39.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328PubMedGoogle Scholar
  40. 40.
    Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloukian CE, Chan CC, Carroll MW, Moss B, Rosenberg SA, Restifo NP (1999) Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc Natl Acad Sci U S A 96:2982Google Scholar
  41. 41.
    Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, Duray PH, Steinberg SM, Allison JP, Davis TA, Rosenberg SA (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100:8372Google Scholar
  42. 42.
    Richards JM, Mehta N, Ramming K, Skosey P (1992) Sequential chemoimmunotherapy in the treatment of metastatic melanoma. J Clin Oncol 10:1338PubMedGoogle Scholar
  43. 43.
    Rosenberg SA (2001) Progress in the development of immunotherapy for the treatment of patients with cancer. J Intern Med 250:462CrossRefPubMedGoogle Scholar
  44. 44.
    Schaed SG, Klimek VM, Panageas KS, Musselli CM, Butterworth L, Hwu WJ, Livingston PO, Williams L, Lewis JJ, Houghton AN, Chapman PB (2002) T-cell responses against tyrosinase 368-376(370D) peptide in HLA*A0201+ melanoma patients: randomized trial comparing incomplete Freund’s adjuvant, granulocyte macrophage colony-stimulating factor, and QS-21 as immunological adjuvants. Clin Cancer Res 8:967PubMedGoogle Scholar
  45. 45.
    Schneider J, Langermans JA, Gilbert SC, Blanchard TJ, Twigg S, Naitza S, Hannan CM, Aidoo M, Crisanti A, Robson KJ, Smith GL, Hill AV, Thomas AW (2001) A prime-boost immunisation regimen using DNA followed by recombinant modified vaccinia virus Ankara induces strong cellular immune responses against the Plasmodium falciparum TRAP antigen in chimpanzees. Vaccine 19:4595CrossRefPubMedGoogle Scholar
  46. 46.
    Sharpe S, Polyanskaya N, Dennis M, Sutter G, Hanke T, Erfle V, Hirsch V, Cranage M (2001) Induction of simian immunodeficiency virus (SIV)-specific CTL in rhesus macaques by vaccination with modified vaccinia virus Ankara expressing SIV transgenes: influence of pre-existing anti-vector immunity. J Gen Virol 82:2215PubMedGoogle Scholar
  47. 47.
    Sherritt MA, Gardner J, Elliott SL, Schmidt C, Purdie D, Deliyannis G, Heath WR, Suhrbier A (2000) Effect of pre-existing cytotoxic T lymphocytes on therapeutic vaccines. Eur J Immunol 30:671Google Scholar
  48. 48.
    Skipper JC, Hendrickson RC, Gulden PH, Brichard V, Van Pel A, Chen Y, Shabanowitz J, Wölfel T, Slingluff CL Jr, Boon T, Hunt DF, Engelhard VH (1996) An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins. J Exp Med 183:527CrossRefPubMedGoogle Scholar
  49. 49.
    Steitz J, Bruck J, Gambotto A, Knop J, Tüting T (2002) Genetic immunization with a melanocytic self-antigen linked to foreign helper sequences breaks tolerance and induces autoimmunity and tumor immunity. Gene Ther 9:208CrossRefPubMedGoogle Scholar
  50. 50.
    Sutter G, Moss B (1992) Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proc Natl Acad Sci U S A 89:10847Google Scholar
  51. 51.
    Tagawa ST, Lee P, Snively J, Boswell W, Ounpraseuth S, Lee S, Hickingbottom B, Smith J, Johnson D, Weber JS (2003) Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer 98:144CrossRefPubMedGoogle Scholar
  52. 52.
    Temme A, Morgenroth A, Schmitz M, Weigle B, Rohayem J, Lindemann D, Fussel M, Ehninger G, Rieber EP (2002) Efficient transduction and long-term retroviral expression of the melanoma-associated tumor antigen tyrosinase in CD34(+) cord blood-derived dendritic cells. Gene Ther 9:1551CrossRefPubMedGoogle Scholar
  53. 53.
    Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G (1999) Vaccination with MAGE-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669 CrossRefPubMedGoogle Scholar
  54. 54.
    Toes RE, Ossendorp F, Offringa R, Melief CJ (1999) CD4 T cells and their role in antitumor immune responses. J Exp Med 189:753CrossRefPubMedGoogle Scholar
  55. 55.
    Tsomides TJ, Walker BD, Eisen HN (1991) An optimal viral peptide recognized by CD8+ T cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein. Proc Natl Acad Sci U S A 88:11276Google Scholar
  56. 56.
    Van Tendeloo VF, Snoeck HW, Lardon F, Vanham GL, Nijs G, Lenjou M, Hendriks L, Van Broeckhoven C, Moulijn A, Rodrigus I, Verdonk P, Van Bockstaele DR, Berneman ZN (1998) Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor- but not monocyte-derived dendritic cells. Gene Ther 5:700CrossRefPubMedGoogle Scholar
  57. 57.
    Weidinger G, Ohlmann M, Schlereth B, Sutter G, Niewiesk S (2001) Vaccination with recombinant modified vaccinia virus Ankara protects against measles virus infection in the mouse and cotton rat model. Vaccine 19:2764CrossRefPubMedGoogle Scholar
  58. 58.
    Wölfel C, Drexler I, Van Pel A, Thres T, Leister N, Herr W, Sutter G, Huber C, Wölfel T (2000) Transporter (TAP)- and proteasome-independent presentation of a melanoma-associated tyrosinase epitope. Int J Cancer 88:432CrossRefPubMedGoogle Scholar
  59. 59.
    Wölfel T, Van Pel A, Brichard V, Schneider J, Seliger B, Meyer zum Büschenfelde KH, Boon T (1994) Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 24:759PubMedGoogle Scholar
  60. 60.
    Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Teates D, Neese P, Grosh WW, Petroni G, Engelhard VH, Slingluff CL Jr (2001) Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. Int J Cancer 92:703CrossRefPubMedGoogle Scholar
  61. 61.
    Zorn E, Hercend T (1999) A MAGE-6-encoded peptide is recognized by expanded lymphocytes infiltrating a spontaneously regressing human primary melanoma lesion. Eur J Immunol 29:602CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ralf G. Meyer
    • 1
  • Cedrik M. Britten
    • 1
  • Ulrike Siepmann
    • 1
  • Barbara Petzold
    • 4
  • Tolga A. Sagban
    • 2
  • Hans A. Lehr
    • 2
  • Bernd Weigle
    • 3
  • Marc Schmitz
    • 3
  • Luis Mateo
    • 4
  • Burkhard Schmidt
    • 5
  • Helga Bernhard
    • 5
  • Thilo Jakob
    • 6
  • Rüdiger Hein
    • 7
  • Gerold Schuler
    • 8
  • Beatrice Schuler-Thurner
    • 8
  • Stephan N. Wagner
    • 9
  • Ingo Drexler
    • 10
  • Gerd Sutter
    • 10
  • Nathaly Arndtz
    • 4
  • Paul Chaplin
    • 4
  • Jost Metz
    • 11
  • Alexander Enk
    • 12
  • Christoph Huber
    • 1
  • Thomas Wölfel
    • 1
    Email author
  1. 1.III. Medizinische KlinikJohannes Gutenberg-UniversitaetMainzGermany
  2. 2.Institut fuer PathologieJohannes Gutenberg-UniversitaetMainzGermany
  3. 3.Institut fuer ImmunologieTechnische UniversitaetDresdenGermany
  4. 4.Bavarian Nordic GmbHMartinsriedGermany
  5. 5.III. Medizinische KlinikTechnische UniversitaetMunichGermany
  6. 6.Klinische Kooperationsgruppe Umweltdermatologie und Allergologie GSF/TUM, Klinik und Poliklinik fuer Dermatologie und AllergologieTechnische Universitaet MuenchenMunichGermany
  7. 7.Klinik und Poliklinik fuer Dermatologie und AllergologieTechnische Universitaet MuenchenMunichGermany
  8. 8.Dermatologische UniversitaetsklinikErlangenGermany
  9. 9.Klinik fuer DermatologieUniversitaet EssenEssenGermany
  10. 10.GSF, Institut fuer Molekulare VirologieMunichGermany
  11. 11.HSK-AukammalleeWilhelm Fresenius KlinikWiesbadenGermany
  12. 12.HautklinikJohannes Gutenberg-UniversitaetMainzGermany

Personalised recommendations