Cancer Immunology, Immunotherapy

, Volume 54, Issue 4, pp 389–394

Phenotype and function of human natural killer cells purified by using a clinical-scale immunomagnetic method

  • Wing Leung
  • Rekha Iyengar
  • Thasia Leimig
  • Marti S. Holladay
  • James Houston
  • Rupert Handgretinger
Original Article

Abstract

Infection, disease relapse, graft failure, and graft-versus-host disease (GVHD) are significant adverse events associated with allogeneic bone marrow transplantation. Donor natural killer (NK) cells may be an ideal cell type for prevention or treatment of all these adverse events. Therefore, we investigated the phenotype and function of human NK cells purified by using a clinical-scale immunomagnetic method. We found that the NK cell purification procedures did not adversely affect the expression of killer cell immunoglobulin-like receptors, adhesion molecules, intracellular cytokines, perforin, and granzyme B. Purified NK cells had extensive proliferative capacity and potent antitumor activity when assessed using an immunodeficient mouse model. While all mice transplanted with unpurified mononuclear cells developed GVHD, none of the mice transplanted with purified NK cells did. NK cells were highly susceptible to lysis by antithymocyte globulin (ATG), whereas G-CSF had a minimal effect on their natural cytotoxicity. These results support future clinical investigation of the use of purified NK cells for adoptive immunotherapy in the absence of ATG.

Keywords

Adoptive immunotherapy Antithymocyte globulin Bone marrow transplantation Leukemia Natural killer cell Neuroblastoma 

References

  1. 1.
    Little MT, Storb R (2002) History of haematopoietic stem-cell transplantation. Nat Rev Cancer 2:231–238CrossRefPubMedGoogle Scholar
  2. 2.
    Dazzi F, Goldman J (1999) Donor lymphocyte infusions. Curr Opin Hematol 6:394–399CrossRefPubMedGoogle Scholar
  3. 3.
    Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, Ruggeri L, Barbabietola G, Aristei C, Latini P, Reisner Y, Martelli MF (1998) Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med 339:1186–1193CrossRefPubMedGoogle Scholar
  4. 4.
    Lewalle P, Triffet A, Delforge A, Crombez P, Selleslag D, De Muynck H, Bron D, Martiat P (2003) Donor lymphocyte infusions in adult haploidentical transplant: a dose finding study. Bone Marrow Transplant 31:39–44CrossRefPubMedGoogle Scholar
  5. 5.
    French AR, Yokoyama WM (2003) Natural killer cells and viral infections. Curr Opin Immunol 15:45–51CrossRefPubMedGoogle Scholar
  6. 6.
    Morrison BE, Park SJ, Mooney JM, Mehrad B (2003) Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest 112:1862–1870CrossRefPubMedGoogle Scholar
  7. 7.
    Murphy WJ, Koh CY, Raziuddin A, Bennett M, Longo DL (2001) Immunobiology of natural killer cells and bone marrow transplantation. Immunol Rev 181:279–289CrossRefPubMedGoogle Scholar
  8. 8.
    Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861CrossRefPubMedGoogle Scholar
  9. 9.
    Leung W, Iyengar R, Turner V, Lang P, Bader P, Conn P, Niethammer D, Handgretinger R (2004) Determinants of antileukemia effects of allogeneic natural killer cells. J Immunol 172:644–650PubMedGoogle Scholar
  10. 10.
    Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100CrossRefPubMedGoogle Scholar
  11. 11.
    Lowe EJ, Turner V, Handgretinger R, Horwitz EM, Benaim E, Hale GA, Woodard P, Leung W (2003) T-cell alloreactivity dominates natural killer cell alloreactivity in minimally T-cell-depleted HLA-non-identical paediatric bone marrow transplantation. Br J Haematol 123:323–326CrossRefPubMedGoogle Scholar
  12. 12.
    Yamasaki S, Henzan H, Ohno Y, Yamanaka T, Iino T, Itou Y, Kuroiwa M, Maeda M, Kawano N, Kinukawa N, Miyamoto T, Nagafuji K, Shimoda K, Inaba S, Hayashi S, Taniguchi S, Shibuya T, Gondo H, Otsuka T, Harada M (2003) Influence of transplanted dose of CD56+ cells on development of graft-versus-host disease in patients receiving G-CSF-mobilized peripheral blood progenitor cells from HLA-identical sibling donors. Bone Marrow Transplant 32:505–510CrossRefPubMedGoogle Scholar
  13. 13.
    Iyengar R, Handgretinger R, Babarin A, Leimig T, Otto M, Geiger T, Holladay M, Houston J, Leung W (2003) Purification of human natural killer cells using a clinical-scale immunomagnetic method. Cytotherapy 5:479–484CrossRefPubMedGoogle Scholar
  14. 14.
    Leung WH, Turner V, Richardson SL, Benaim E, Hale G, Horwitz EM, Woodard P, Bowman LC (2001) Effect of HLA class I or class II incompatibility in pediatric marrow transplantation from unrelated and related donors. Hum Immunol 62:399–407CrossRefPubMedGoogle Scholar
  15. 15.
    Naundorf S, Preithner S, Mayer P, Lippold S, Wolf A, Hanakam F, Fichtner I, Kufer P, Raum T, Riethmuller G, Baeuerle PA, Dreier T (2002) In vitro and in vivo activity of MT201, a fully human monoclonal antibody for pancarcinoma treatment. Int J Cancer 100:101–110CrossRefPubMedGoogle Scholar
  16. 16.
    Leung W, Ramirez M, Mukherjee G, Perlman EJ, Civin CI (1999) Comparisons of alloreactive potential of clinical hematopoietic grafts. Transplantation 68:628–635CrossRefPubMedGoogle Scholar
  17. 17.
    Raziuddin A, Longo DL, Bennett M, Winkler-Pickett R, Ortaldo JR, Murphy WJ (2002) Increased bone marrow allograft rejection by depletion of NK cells expressing inhibitory Ly49 NK receptors for donor class I antigens. Blood 100:3026–3033CrossRefPubMedGoogle Scholar
  18. 18.
    Murphy WJ, Bennett M, Kumar V, Longo DL (1992) Donor-type activated natural killer cells promote marrow engraftment and B cell development during allogeneic bone marrow transplantation. J Immunol 148:2953–2960PubMedGoogle Scholar
  19. 19.
    Asai O, Longo DL, Tian ZG, Hornung RL, Taub DD, Ruscetti FW, Murphy WJ (1998) Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J Clin Invest 101:1835–1842PubMedGoogle Scholar
  20. 20.
    Miller JS, Prosper F, McCullar V (1997) Natural killer (NK) cells are functionally abnormal and NK cell progenitors are diminished in granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cell collections. Blood 90:3098–3105PubMedGoogle Scholar
  21. 21.
    Joshi SS, Lynch JC, Pavletic SZ, Tarantolo SR, Pirruccello SJ, Kessinger A, Bishop MR (2001) Decreased immune functions of blood cells following mobilization with granulocyte colony-stimulating factor: association with donor characteristics. Blood 98:1963–1970CrossRefPubMedGoogle Scholar
  22. 22.
    Joshi SS, Bishop MR, Lynch JC, Tarantolo SR, Abhyankar S, Bierman PJ, Vose JM, Geller RB, McGuirk J, Foran J, Bociek RG, Hadi A, Day SD, Armitage JO, Kessinger A, Pavletic ZS (2003) Immunological and clinical effects of post-transplant G-CSF versus placebo in T-cell replete allogeneic blood transplant patients: results from a randomized double-blind study. Cytotherapy 5:542–552CrossRefPubMedGoogle Scholar
  23. 23.
    Neudorf S, Jones M (1988) The effects of antithymocyte globulin on natural killer cells. Exp Hematol 16:831–835PubMedGoogle Scholar
  24. 24.
    Myint AA, Malkovska V, Morgan S, Luckit J, Wonke B, Gordon-Smith EC (1990) Antilymphocyte globulin therapy enhances impaired function of natural killer cells and lymphokine activated killer cells in aplastic anaemia. Br J Haematol 75:578–584PubMedGoogle Scholar
  25. 25.
    Meijer E, Bloem AC, Dekker AW, Verdonck LF (2003) Effect of antithymocyte globulin on quantitative immune recovery and graft-versus-host disease after partially T-cell-depleted bone marrow transplantation: a comparison between recipients of matched related and matched unrelated donor grafts. Transplantation 75:1910–1913CrossRefPubMedGoogle Scholar
  26. 26.
    Preville X, Flacher M, LeMauff B, Beauchard S, Davelu P, Tiollier J, Revillard JP (2001) Mechanisms involved in antithymocyte globulin immunosuppressive activity in a nonhuman primate model. Transplantation 71:460–468CrossRefPubMedGoogle Scholar
  27. 27.
    Ross ME, Caligiuri MA (1997) Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response. Blood 89:910–918PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Wing Leung
    • 1
    • 2
  • Rekha Iyengar
    • 1
  • Thasia Leimig
    • 1
  • Marti S. Holladay
    • 1
  • James Houston
    • 1
  • Rupert Handgretinger
    • 1
    • 2
  1. 1.Department of Hematology-OncologySt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of PediatricsUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations