Cancer Immunology, Immunotherapy

, Volume 53, Issue 12, pp 1127–1134 | Cite as

Modulation of monocyte–tumour cell interactions by Mycobacterium vaccae

  • Jarosław Baran
  • Monika Baj-Krzyworzeka
  • Kazimierz Węglarczyk
  • Irena Ruggiero
  • Marek Zembala
Original Article

Abstract

Immunotherapy with Mycobacterium vaccae as an adjuvant to chemotherapy has recently been applied to treatment of patients with cancer. One of the mechanisms of antitumour activity of Mycobacterium bovis bacillus Calmette-Guérin (BCG), the prototype immunomodulator, is associated with activation of monocytes/macrophages. These studies were undertaken to determine how M. vaccae affects monocyte–tumour cell interactions and, in particular, whether it can prevent or reverse deactivation of monocytes that occurrs following their contact with tumour cells during coculture in vitro. Deactivation is characterised by the impaired ability of monocytes to produce tumour necrosis factor α (TNF-α), interleukin 12 (IL-12), and enhanced IL-10 secretion following their restimulation with tumour cells. To see whether deactivation of monocytes can be either prevented or reversed, three different strains of M. vaccae—B 3805, MB 3683, and SN 920—and BCG were used to stimulate monocytes before or after exposure to tumour cells. Pretreatment of monocytes with M. vaccae MB 3683, SN 920 and BCG before coculture resulted in increased TNF-α and decreased IL-10 production. All strains of M. vaccae and BCG used for treatment of deactivated monocytes enhanced depressed TNF-α secretion. Strain SN 920 and BCG increased IL-12 release but only BCG treatment inhibited an enhanced IL-10 production by deactivated monocytes. Thus, although some strains of M. vaccae may either prevent or reverse tumour-induced monocyte deactivation, none of them appears to be more effective than BCG.

Keywords

Cancer cells Cytokines Deactivation Monocytes Mycobacterium vaccae 

Notes

Acknowledgements

This study was supported by the National Committee for Scientific Research (grant No. 6 PO5A 096 20). We wish to thank Prof. Leon Sedlaczek (Centre for Microbiology and Virology, Polish Academy of Sciences, Łódź, Poland) for kind donation of M. vaccae strains. We also thank Ms Barbara Hajto and Mariola Ożóg for skillful technical assistance.

References

  1. 1.
    Assersohn L, Souberbielle BE, O’Brien ME, Archer CD, Mendes R, Bass R, Bromelow KV, Palmer RD, Bouilloux E, Kennard DA, Smith IE (2002) A randomized pilot study of SRL 172 (Mycobacterium vaccae) in patients with small cell lung cancer (SCLC) treated with chemotherapy. Clin Oncol 14:23CrossRefGoogle Scholar
  2. 2.
    Benkhart EM, Siedlar M, Wedel A, Werner T, Ziegler-Heitbrock HWL (2000) Role of Stat3 in lipopolysaccharide-induced IL-10 gene expression. J Immunol 165:1612PubMedGoogle Scholar
  3. 3.
    Clerici B, Enrico E, Shearer G (1996) Tumour enhancement phenomenon: reinterpretation from a Th1/Th2 perspective. J Natl Cancer Inst 88:461PubMedGoogle Scholar
  4. 4.
    Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64:275PubMedGoogle Scholar
  5. 5.
    Hrouda D, Baban B, Dunsmuir W, Kirby R, Dalgleish AG (1998) Immunotherapy of advanced prostate cancer: a phase I/II trial using Mycobacterium vaccae (SRL172). Br J Urol 82:568CrossRefPubMedGoogle Scholar
  6. 6.
    Jones BW, Means TK, Heldwein KA, Keen MA, Hill PJ, Belisle JT, Fenton MJ (2001) Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol 69:1036PubMedGoogle Scholar
  7. 7.
    Kremer L, Estaquier J, Brandt E, Ameisen JC, Locht C (1997) Mycobacterium bovis Bacillus Calmette–Guerin infection preapoptosis of resting human monocytes. Eur J Immunol 27:2450PubMedGoogle Scholar
  8. 8.
    Kurisu H, Matsuyama H, Ohmoto Y, Shimabukuro T, Naito K (1994) Cytokine-mediated antitumor effect of bacillus Calmette–Guerin on tumor cells in vitro. Cancer Immunol Immunother 39:249CrossRefPubMedGoogle Scholar
  9. 9.
    Lamm DL (1992) Optimal BCG treatment of superficial bladder cancer as defined by American trails. Eur Urol 21[Suppl 2]:12PubMedGoogle Scholar
  10. 10.
    Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2:725CrossRefPubMedGoogle Scholar
  11. 11.
    Mantovani A, Sozzani S, Massimo L, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549CrossRefPubMedGoogle Scholar
  12. 12.
    Maraveyas A, Baban B, Kennard D, Rook GA, Westby M, Grange JM, Lydyard P, Stanford JL, Jones M, Selby P, Dalgleish AG (1999) Possible improved survival of patients with stage IV AJCC melanoma receiving SRL 172 immunotherapy: correlation with induction of increased levels of intracellular interleukin-2 in peripheral blood lymphocytes. Ann Oncol 10:817CrossRefPubMedGoogle Scholar
  13. 13.
    Matsumoto M, Seya T, Kikkawa S, Tsuji S, Shida K, Nomura M, Kurita-Taniguchi M, Ohigashi H, Yokouchi H, Takami K, Hayashi A, Azuma I, Masaoka T, Kodama K, Toyoshima K, Higashiyama M (2001) Interferon gamma-producing ability in blood lymphocytes of patients with lung cancer through activation of the innate immune system by BCG cell wall skeleton. Int Immunopharmacol 8:1559CrossRefGoogle Scholar
  14. 14.
    Mendes R, O’Brien MER, Mitra A, Norton A, Gregory RK, Padhani AR, Bromelow KV, Winkley AR, Ashley S, Smith IE, Souberbielle BE (2002) Clinical and immunological assessment of Mycobacterium vaccae (SRL 172) with chemotherapy in patients with malignant mesothelioma. Br J Cancer 86:336CrossRefPubMedGoogle Scholar
  15. 15.
    Morales A, Eidinger D, Bruce AW (1976) Intracavitary bacillus Calmette–Guerin in the treatment of superficial bladder tumours. J Urol 116:180PubMedGoogle Scholar
  16. 16.
    Mytar B, Siedlar M, Wołoszyn M, Ruggiero I, Pryjma J, Zembala M (1999) Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity. Br J Cancer 79:737CrossRefPubMedGoogle Scholar
  17. 17.
    Mytar B, Siedlar M, Wołoszyn M, Colizzi V, Zembala M (2001) Cross-talk between human monocytes and cancer cells during reactive oxygen intermediates generation: the essential role of hyaluronan. Int J Cancer 94:727CrossRefPubMedGoogle Scholar
  18. 18.
    Mytar B, Wołoszyn M, Szatanek R, Baj-Krzyworzeka M, Siedlar M, Ruggiero I, Więckiewicz J, Zembala M (2003) Tumor cell-induced deactivation of human monocytes. J Leukoc Biol 74:1094CrossRefPubMedGoogle Scholar
  19. 19.
    Nicholson S, Guile K, John J, Clarke IA, Diffley J, Donnellan P, Michael A, Szlosarek P, Dalgleish AG (2003) A randomized phase II trial of SRL 172 (Mycobacterium vaccae)±low-dose interleukin-2 in the treatment of metastatic malignant melanoma. Melanoma Res 13:389CrossRefPubMedGoogle Scholar
  20. 20.
    O’Brien ME, Saini A, Smith IE, Webb A, Gregory K, Mendes R, Ryan C, Priest K, Bromelow KV, Palmer RD, Tuckwell N, Kennard DA, Souberbielle BE (2000) A randomized phase II study of SRL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Brit J Cancer 83:853CrossRefPubMedGoogle Scholar
  21. 21.
    Popiela T, Zembala M, Oszacki J, Jędrychowski W (1982) A follow-up study on chemoimmunotherapy (5-fluorouracil and BCG) in advanced gastric cancer. Cancer Immunol Immunother 13:182PubMedGoogle Scholar
  22. 22.
    Portelance V, Boulanger RP, Duranleau-Dragon D (1976) Comparative virulence and antitumor activity of BCG substrains. In: Lamoureux G, Turcotte R, Portelance V (eds) BCG in cancer immunotherapy. Grune and Stratton, New York, pp 5–13Google Scholar
  23. 23.
    Pryor K, Goddard J, Goldstein D, Stricker P, Russell P, Golovsky D, Penny R (1995) Bacillus Calmette-Guerin (BCG) enhances monocyte- and lymphocyte-mediated bladder tumour cell killing. Br J Cancer 71:801PubMedGoogle Scholar
  24. 24.
    Sedlaczek L, Lisowska K, Korycka M, Rumijowska A, Ziółkowski A, Długoński J (1999) The effect of cell wall components on glycine-enhanced sterol side chain degradation to androstene derivatives by mycobacteria. Appl Microbiol Biotechnol 52:563CrossRefPubMedGoogle Scholar
  25. 25.
    Sica A, Saccani A, Botazzi B, Polentaruti N, Vecchi A, van Damme J, Mantovani A (2000) Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164:762PubMedGoogle Scholar
  26. 26.
    Skinner M, Yuan S, Prestidge R, Chuk D, Watson J, Tan P (1997) Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis. Infect Immun 65:4525PubMedGoogle Scholar
  27. 27.
    Stanford JL, Rook GA, Bahr GM, Dowlati Y, Ganapati R, Ghazi Sai K, Lucas S, Ramu G, Torres P, Minh Ly H et al (1990) Mycobacterium vaccae in immuniprophylaxis and immunotherapy of leprosy and tuberculosis. Vaccine 8:525CrossRefPubMedGoogle Scholar
  28. 28.
    Tian X, Groves M (1999) Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccae in chitosan nanoparticles. J Pharm Pharmacol 51:151CrossRefPubMedGoogle Scholar
  29. 29.
    Uehori J, Matsumoto M, Tsuji S, Akazawa T, Takeuchi O, Akira S, Kawata T, Azuma I, Toyoshima K, Seya T (2003) Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette–Guerin peptidoglycan. Infect Immun 71:4238CrossRefPubMedGoogle Scholar
  30. 30.
    Wang C, Rook G (1998) Inhibition of an established allergic response to ovalbumin in BALB/c mice by killed Mycobacterium vaccae. Immunology 93:307CrossRefPubMedGoogle Scholar
  31. 31.
    Zembala M, Czupryna A, Wieckiewicz J, Jasinski M, Pryjma J, Ruggiero I, Siedlar M, Popiela T (1993) Tumour-cell-induced production of tumour necrosis factor by monocytes of gastric cancer patients receiving BCG immunotherapy. Cancer Immunol Immunother 36:127PubMedGoogle Scholar
  32. 32.
    Zembala M, Siedlar M, Ruggiero I, Wieckiewicz J, Mytar B, Mattei M, Colizzi V (1994) The MHC class-II and CD44 molecules are involved in the induction of tumour necrosis factor (TNF) gene expression by human monocytes stimulated with tumour cells. Int J Cancer 56:269PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Jarosław Baran
    • 1
  • Monika Baj-Krzyworzeka
    • 1
  • Kazimierz Węglarczyk
    • 1
  • Irena Ruggiero
    • 1
  • Marek Zembala
    • 1
  1. 1.Department of Clinical Immunology, Polish-American Institute of PaediatricsJagiellonian University Medical CollegeCracowPoland

Personalised recommendations