Cancer Immunology, Immunotherapy

, Volume 54, Issue 2, pp 157–171 | Cite as

A polytope DNA vaccine elicits multiple effector and memory CTL responses and protects against human papillomavirus 16 E7-expressing tumour

  • Tracy Doan
  • Karen Herd
  • Ian Ramshaw
  • Scott Thomson
  • Robert W. Tindle
Original Article

Abstract

Vaccine-induced CD8 T cells directed to tumour-specific antigens are recognised as important components of protective and therapeutic immunity against tumours. Where tumour antigens have pathogenic potential or where immunogenic epitopes are lost from tumours, development of subunit vaccines consisting of multiple individual epitopes is an attractive alternative to immunising with whole tumour antigen. In the present study we investigate the efficacy of two DNA-based multiepitope (‘polytope’) vaccines containing murine (H-2b) and human (HLA-A*0201)–restricted epitopes of the E7 oncoprotein of human papillomavirus type 16, in eliciting tumour-protective cytotoxic T-lymphocyte (CTL) responses. We show that the first of these polytopes elicited powerful effector CTL responses (measured by IFN-γ ELISpot) and long-lived memory CTL responses (measured by functional CTL assay and tetramers) in immunised mice. The responses could be boosted by immunisation with a recombinant vaccinia virus expressing the polytope. Responses induced by immunisation with polytope DNA alone partially protected against infection with recombinant vaccinia virus expressing the polytope. Complete protection was afforded against challenge with an E7-expressing tumour, and reduced growth of nascent tumours was observed. A second polytope differing in the exact composition and order of CTL epitopes, and lacking an inserted endoplasmic reticulum targeting sequence and T-helper epitope, induced much poorer CTL responses and failed to protect against tumour challenge. These observations indicate the validity of a DNA polytope vaccine approach to human papillomavirus E7–associated carcinoma, and underscore the importance of design in polytope vaccine construction.

Keywords

Cytotoxic T lymphocyte DNA vaccine Human papillomavirus Polytope Tumour protection 

Notes

Acknowledgements

The work was funded by the National Health and Medical Research Council (Australia) and Queensland Cancer Fund. Dr Andreas Suhrbier provided pSTMPDV. We thank Ms Donna West and her staff for excellent animal husbandry. Publication number 207 of the Sir Alberts Sakzewski Virus Research Centre.

References

  1. 1.
    Ada G (1999) The coming of age of tumour immunotherapy. Immunol Cell Biol 77:180CrossRefPubMedGoogle Scholar
  2. 2.
    Alexander J, Sidney J, Southwood S, Ruppert J, Oseroff C, Maewal A, Snoke K, Serra HM, Kubo RT, Sette A (1994) Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1:751PubMedGoogle Scholar
  3. 3.
    Alexander J, Oseroff C, Sidney J, Wentworth P, Keogh E, Hermanson G, Chisari FV, Kubo RT, Grey HM, Sette A (1997) Derivation of HLA-A11/Kb transgenic mice: functional CTL repertoire and recognition of human A11-restricted CTL epitopes. J Immunol 159:4753PubMedGoogle Scholar
  4. 4.
    Anderson K, Cresswell P, Gammon M, Hermes J, Williamson A, Zweerink H (1991) Endogenously synthesized peptide with an endoplasmic reticulum signal sequence sensitizes antigen processing mutant cells to class I-restricted cell-mediated lysis. J Exp Med 174:489CrossRefPubMedGoogle Scholar
  5. 5.
    Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Boursnell ME, Rutherford E, Hickling JK et al (1996) A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 347:1523CrossRefPubMedGoogle Scholar
  6. 6.
    Chen M, Shirai M, Liu Z, Arichi T, Takahashi H, Nishioka M (1998) Efficient class II major histocompatibility complex presentation of endogenously synthesized hepatitis C virus core protein by Epstein-Barr virus-transformed B-lymphoblastoid cell lines to CD4(+) T cells. J Virol 72:8301PubMedGoogle Scholar
  7. 7.
    Chu NR, Wu HB, Wu T, Boux LJ, Siegel MI, Mizzen LA (2000) Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Guerin (BCG) hsp65 and HPV16 E7. Clin Exp Immunol 121:216CrossRefPubMedGoogle Scholar
  8. 8.
    Del Val M, Schlicht HJ, Ruppert T, Reddehase MJ, Koszinowski UH (1991) Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell 66:1145CrossRefPubMedGoogle Scholar
  9. 9.
    Doan T, Chambers M, Street M, Fernando GJ, Herd K, Lambert P, Tindle R (1998) Mice expressing the E7 oncogene of HPV16 in epithelium show central tolerance, and evidence of peripheral anergising tolerance, to E7-encoded cytotoxic T-lymphocyte epitopes. Virology 244:352CrossRefPubMedGoogle Scholar
  10. 10.
    Eiben GL, Velders MP, Schreiber H, Cassetti MC, Pullen JK, Smith LR, Kast WM (2002) Establishment of an HLA-A*0201 human papillomavirus type 16 tumor model to determine the efficacy of vaccination strategies in HLA-A*0201 transgenic mice. Cancer Res 62:5792Google Scholar
  11. 11.
    Evans EM, Man S, Evans AS, Borysiewicz LK (1997) Infiltration of cervical cancer tissue with human papillomavirus-specific cytotoxic T-lymphocytes. Cancer Res 57:2943Google Scholar
  12. 12.
    Feltkamp MC, Smits HL, Vierboom MP, Minnaar RP, de Jongh BM, Drijfhout JW, ter Schegget J, Melief CJ, Kast WM (1993) Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 23:2242PubMedGoogle Scholar
  13. 13.
    Feltkamp MC, Vreugdenhil GR, Vierboom MP, Ras E, van der Burg SH, ter Schegget J, Melief CJ, Kast WM (1995) Cytotoxic T lymphocytes raised against a subdominant epitope offered as a synthetic peptide eradicate human papillomavirus type 16-induced tumors. Eur J Immunol 25:2638PubMedGoogle Scholar
  14. 14.
    Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino A, Garcia Z, Michel ML, Jack RW, Jung G, Kosmatopoulos K, Mateo L, Suhrbier A et al (1999) H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur J Immunol 29:3112CrossRefPubMedGoogle Scholar
  15. 15.
    Fossum C, Bergstrom M, Lovgren K, Watson DL, Morein B (1990) Effect of iscoms and their adjuvant moiety (matrix) on the initial proliferation and IL-2 responses: comparison of spleen cells from mice inoculated with iscoms and/or matrix. Cell Immunol 129:414PubMedGoogle Scholar
  16. 16.
    Gotch F, Rothbard J, Howland K, Townsend A, McMichael A (1987) Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2. Nature 326:881CrossRefPubMedGoogle Scholar
  17. 17.
    Greenstone HL, Nieland JD, de Visser KE, De Bruijn ML, Kirnbauer R, Roden RB, Lowy DR, Kast WM, Schiller JT (1998) Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc Natl Acad Sci U S A 95:1800CrossRefPubMedGoogle Scholar
  18. 18.
    Hanke T, McMichael AJ (2000) Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 6:951CrossRefPubMedGoogle Scholar
  19. 19.
    Ishioka GY, Fikes J, Hermanson G, Livingston B, Crimi C, Qin M, del Guercio MF, Oseroff C, Dahlberg C, Alexander J, Chesnut RW, Sette A (1999) Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes. J Immunol 162:3915PubMedGoogle Scholar
  20. 20.
    Ji H, Wang TL, Chen CH, Pai SI, Hung CF, Lin KY, Kurman RJ, Pardoll DM, Wu TC (1999) Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum Gene Ther 10:2727CrossRefPubMedGoogle Scholar
  21. 21.
    Jungbluth AA, Chen YT, Stockert E, Busam KJ, Kolb D, Iversen K, Coplan K, Williamson B, Altorki N, Old LJ (2001) Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer 92:856CrossRefPubMedGoogle Scholar
  22. 22.
    Le TT, Drane D, Malliaros J, Cox JC, Rothel L, Pearse M, Woodberry T, Gardner J, Suhrbier A (2001) Cytotoxic T cell polyepitope vaccines delivered by ISCOMs. Vaccine 19:4669CrossRefPubMedGoogle Scholar
  23. 23.
    Lin KY, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC (1996) Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 56:21Google Scholar
  24. 24.
    Moss DJ, Schmidt C, Elliott S, Suhrbier A, Burrows S, Khanna R (1996) Strategies involved in developing an effective vaccine for EBV-associated diseases. Adv Cancer Res 69:213PubMedGoogle Scholar
  25. 25.
    Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, Kast WM, Fascio G, Marty V, Weber J (2000) A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 6:3406PubMedGoogle Scholar
  26. 26.
    Pascolo S, Bervas N, Ure JM, Smith AG, Lemonnier FA, Perarnau B (1997) HLA-A2.1-restricted education and cytolytic activity of CD8(+) T lymphocytes from beta2 microglobulin (beta2m) HLA-A2.1 monochain transgenic H-2Db beta2m double knockout mice. J Exp Med 185:2043CrossRefPubMedGoogle Scholar
  27. 27.
    Ramsay AJ, Kent SJ, Strugnell RA, Suhrbier A, Thomson SA, Ramshaw IA (1999) Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity. Immunol Rev 171:27PubMedGoogle Scholar
  28. 28.
    Ressing ME, Sette A, Brandt RM, Ruppert J, Wentworth PA, Hartman M, Oseroff C, Grey HM, Melief CJ, Kast WM (1995) Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 154:5934PubMedGoogle Scholar
  29. 29.
    Ressing ME, van Driel WJ, Celis E, Sette A, Brandt MP, Hartman M, Anholts JD, Schreuder GM, ter Harmsel WB, Fleuren GJ, Trimbos BJ, Kast WM et al (1996) Occasional memory cytotoxic T-cell responses of patients with human papillomavirus type 16-positive cervical lesions against a human leukocyte antigen-A *0201-restricted E7-encoded epitope. Cancer Res 56:582Google Scholar
  30. 30.
    Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380CrossRefPubMedGoogle Scholar
  31. 31.
    Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495CrossRefPubMedGoogle Scholar
  32. 32.
    Seder RA, Ahmed R (2003) Similarities and differences in CD4+ and CD8+ effector and memory T generation. Nat Immunol 4:835CrossRefPubMedGoogle Scholar
  33. 33.
    Slebos RJ, Lee MH, Plunkett BS, Kessis TD, Williams BO, Jacks T, Hedrick L, Kastan MB, Cho KR (1994) p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc Natl Acad Sci U S A 91:5320PubMedGoogle Scholar
  34. 34.
    Smith SG, Patel PM, Porte J, Selby PJ, Jackson AM (2001) Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin Cancer Res 7:4253PubMedGoogle Scholar
  35. 35.
    Suhrbier A (2002) Polytope vaccines for the codelivery of multiple CD8 T-cell epitopes. Expert Rev Vaccines 1:207PubMedGoogle Scholar
  36. 36.
    Thomson SA, Khanna R, Gardner J, Burrows SR, Coupar B, Moss DJ, Suhrbier A (1995) Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8+ cytotoxic T cells: implications for vaccine design. Proc Natl Acad Sci U S A 92:5845PubMedGoogle Scholar
  37. 37.
    Thomson SA, Elliott SL, Sherritt MA, Sproat KW, Coupar BE, Scalzo AA, Forbes CA, Ladhams AM, Mo XY, Tripp RA, Doherty PC, Moss DJ et al (1996) Recombinant polyepitope vaccines for the delivery of multiple CD8 cytotoxic T cell epitopes. J Immunol 157:822PubMedGoogle Scholar
  38. 38.
    Thomson SA, Sherritt MA, Medveczky J, Elliott SL, Moss DJ, Fernando GJ, Brown LE, Suhrbier A (1998) Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J Immunol 160:1717PubMedGoogle Scholar
  39. 39.
    Uger RA, Barber BH (1997) Presentation of an influenza nucleoprotein epitope incorporated into the H-2Db signal sequence requires the transporter-associated with antigen presentation. J Immunol 158:685PubMedGoogle Scholar
  40. 40.
    van Driel WJ, Ressing ME, Kenter GG, Brandt RM, Krul EJ, van Rossum AB, Schuuring E, Offringa R, Bauknecht T, Tamm-Hermelink A, van Dam PA, Fleuren GJ et al (1999) Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer 35:946Google Scholar
  41. 41.
    Velders MP, Weijzen S, Eiben GL, Elmishad AG, Kloetzel PM, Higgins T, Ciccarelli RB, Evans M, Man S, Smith L, Kast WM (2001) Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J Immunol 166:5366PubMedGoogle Scholar
  42. 42.
    Vitiello A, Sherman LA (1983) Recognition of influenza-infected cells by cytolytic T lymphocyte clones: determinant selection by class I restriction elements. J Immunol 131:1635PubMedGoogle Scholar
  43. 43.
    Von Knebel DM, Rittmuller C, Aengeneyndt F, Jansen-Durr P, Spitkovsky D (1994) Reversible repression of papillomavirus oncogene expression in cervical carcinoma cells: consequences for the phenotype and E6-p53 and E7-pRB interactions. J Virol 68:2811PubMedGoogle Scholar
  44. 44.
    Yewdell JW, Bennink JR (1999) Immunodominance in major histocompatibility complex class I-restricted lymphocyte responses. Annu Rev Immunol 17:51CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Tracy Doan
    • 1
  • Karen Herd
    • 1
  • Ian Ramshaw
    • 2
  • Scott Thomson
    • 2
  • Robert W. Tindle
    • 1
  1. 1.Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, Royal Children’s HospitalUniversity of QueenslandBrisbaneAustralia
  2. 2.John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia

Personalised recommendations