Cancer Immunology, Immunotherapy

, Volume 53, Issue 10, pp 904–910 | Cite as

The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape

  • Ignacio Algarra
  • Angel García-Lora
  • Teresa Cabrera
  • Francisco Ruiz-Cabello
  • Federico Garrido
Review

Abstract

Tumor immune escape variants can be identified in human and experimental tumors. A variety of different strategies are used by tumor cells to avoid recognition by different immune effector mechanisms. Among these escape routes, alteration of MHC class I cell surface expression is one of the mechanisms most widely used by tumor cells. In this review we focus our attention on the T-cell immune selection of MHC class I–deficient tumor variants. Different altered MHC class I phenotypes that originate from multiple molecular mechanisms can be identified in human tumors. MHC-deficient tumor clones can escape T-cell immune responses, but are in theory more susceptible to NK-cell–mediated lysis. In this context, we also review the controversial issue of the aberrant expression of nonclassical HLA class I molecules, particularly HLA-G, in tumors. This expression may be relevant in tumor cells that have lost the capacity to interact with NK inhibitory receptors—namely, those tumor cells with no HLA-B or HLA-C expression. Most published studies have not analyzed these possibilities and do not provide information about the complete HLA-A, HLA-B, or HLA-C molecule profiles of the tumors studied. In contrast, HLA-E has been reported to be expressed in some tumor cell lines with very low HLA-A, HLA-B, and HLA-C expression, suggesting that HLA-E may indeed, in some cases, play a role by inhibiting NK lysis of cells that otherwise would be destroyed by NK cells. Finally, we provide evidence that the status of the immune system in the tumor-bearing animal is capable of defining the MHC profile of the tumor cells. In other words, MHC class I–negative metastatic colonies are produced in immunocompetent animals, and MHC class I–positive colonies in T-cell immunodeficient individuals.

Keywords

Immune escape MHC class I molecules Tumor variants 

References

  1. 1.
    Ahmed I, Hamacher KL (2002) Angiosarcoma in a chronically immunosuppressed renal transplant recipient: report of a case and review of the literature. Am J Dermatopathol 24:330CrossRefPubMedGoogle Scholar
  2. 2.
    Algarra I, Gaforio JJ, Garrido A, Mialdea MJ, Pérez M, Garrido F (1991) Heterogeneity of MHC-class I antigens in clones of methylcholanthrene induced tumors: implications for local growth and metastasis. Int J Cancer 6:73Google Scholar
  3. 3.
    Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727CrossRefPubMedGoogle Scholar
  4. 4.
    Boesen M, Svane IM, Engel M, Rygaard J, Thomsen AR, Werdelin O (2000) CD8+ T cells are crucial for the ability of congenic normal mice to reject highly immunogenic sarcomas induced in nude mice with 3-methylcholanthrene. Clin Exp Immunol 121:1365CrossRefGoogle Scholar
  5. 5.
    Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337Google Scholar
  6. 6.
    Botti C, Seregni E, Ferrari L, Martinetti A, Bombardieri E (1998) Immunosuppressive factors: role in cancer development and progression. Int J Biol Markers 13:51PubMedGoogle Scholar
  7. 7.
    Braud V, Jones EY, McMichael A (1997) The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur J Immunol 27:1164PubMedGoogle Scholar
  8. 8.
    Bukur J, Seliger B (2003) The role of HLA G for protection of human renal cell-carcinoma cells from immune-mediated lysis: implications for immunotherapies. Sem Cancer Biol 13:353CrossRefGoogle Scholar
  9. 9.
    Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 13:1PubMedGoogle Scholar
  10. 10.
    Cadranel J, Naccache J, Wislez M, Mayaud C (1999) Pulmonary malignancies in the immunocompromised patient. Respiration 66:289CrossRefPubMedGoogle Scholar
  11. 11.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991CrossRefPubMedGoogle Scholar
  12. 12.
    Ehrlich P (1909) Ueber den jetzigen Stand der Karzinomforschung (About the current state of the art of cancer research). NedTijdschr Geneesk 5:273Google Scholar
  13. 13.
    Engel AM, Svane IM, Rigaard J, Werdelin O (1997) MCA sarcomas induced in scid mice are more immunogenic than MCA sarcomas induced in congenic, immunocompetent mice. Scand J Immunol 45:463CrossRefPubMedGoogle Scholar
  14. 14.
    Frumento G, Franchello S, Palmisano GL, Nicotra MR, Giacomini P, Loke YW, Geraghty DE, Maio M, Manzo C, Natali PG, Ferrara GB (2000) Melanomas and melanoma cell lines do not express HLA-G, and the expression cannot be induced by gamma-IFN treatment. Tissue Antigens 56:30CrossRefPubMedGoogle Scholar
  15. 15.
    Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, Craft J, Yin Z (2003) Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J Exp Med 198:433CrossRefPubMedGoogle Scholar
  16. 16.
    Garcia-Lora A, Algarra I, Gaforio JJ, Ruiz-Cabello F, Garrido F (2001) Immunoselection by T lymphocytes generates repeated MHC class I deficient metastatic tumor variants. Int J Cancer 91:109PubMedGoogle Scholar
  17. 17.
    Garcia-Lora A, Martinez M, Algarra I, Gaforio JJ, Garrido F (2003) MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer 106:521CrossRefPubMedGoogle Scholar
  18. 18.
    Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance and tumor immune escape. J Cell Physiol 195:346CrossRefPubMedGoogle Scholar
  19. 19.
    Garrido A, Pérez M, Delgado C, Garrido ML, Rojano J, Algarra I, Garrido F (1986) Influence of class I H-2 gene expression on local tumor growth. Exp Clin Immunogenet 13:98Google Scholar
  20. 20.
    Garrido F, Algarra I (2001) MHC antigens and tumor escape from immune surveillance. Adv Cancer Res 83:117PubMedGoogle Scholar
  21. 21.
    Garrido F, Cabrera T, Concha A, Glew S, Ruiz-Cabello F, Stern PL (1993) Natural history of HLA expression during tumour development. Immunol Today 14:491PubMedGoogle Scholar
  22. 22.
    Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern P (1997) Implications for immune surveillance of altered HLA class I phenotypes in human tumors. Immunol Today 18:89PubMedGoogle Scholar
  23. 23.
    Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605PubMedGoogle Scholar
  24. 24.
    Girardi M, Glusac E, Filler RB, Roberts SJ, Propperova I, Lewis J, Tigelaar RE, Hayday AC (2003) The distinct contributions of murine T cell receptor (TCR)gammadelta+ and TCRalphabeta+ T cells to different stages of chemically induced skin cancer. J Exp Med 198:747CrossRefPubMedGoogle Scholar
  25. 25.
    Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737PubMedGoogle Scholar
  26. 26.
    Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255CrossRefPubMedGoogle Scholar
  27. 27.
    Haliotis T, Ball JK, Dexter D, Roder JC (1985) Spontaneous and induced primary oncogenesis in natural killer (NK)-cell deficient beige mutant mice. Int J Cancer 35:505PubMedGoogle Scholar
  28. 28.
    Hayashi T, Faustman DL(2002) Development of spontaneous uterine tumors in low molecular mass polypeptide-2 knockout mice. Cancer Res 62:24PubMedGoogle Scholar
  29. 29.
    Jager E, Ringhoffer M, Karbach J, Arand M, Oesch F, Knuth (1996) A Inverse relationship of melanocyte differentiation antigen expression in melanoma tissues and CD8+ cytotoxic-T-cell responses: evidence for immunoselection of antigen-loss variants in vivo. Int J Cancer 66:470PubMedGoogle Scholar
  30. 30.
    Johnsen A, Templeton DJ, Sy MS, Harding CV (1999) Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 163:4224PubMedGoogle Scholar
  31. 31.
    Kagi DB, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31PubMedGoogle Scholar
  32. 32.
    Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95:7556CrossRefPubMedGoogle Scholar
  33. 33.
    Le Bouteiller P (1997) HLA-G: on the track of immunological functions. Eur J Immunogenet 24:397CrossRefPubMedGoogle Scholar
  34. 34.
    Lehmann F, Marchand M, Hainaut P, Pouillart P, Sastre X, Ikeda H, Boon T, Coulie PG (1995) Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol 25:340PubMedGoogle Scholar
  35. 35.
    Llano M, Lee N, Navarro F, Garcia P, Albar JP, Geraghty DE, Lopez-Botet M (1998) HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors: preferential response to an HLA-G-derived nonamer. Eur J Immunol 28:2854Google Scholar
  36. 36.
    Marin R, Ruiz-Cabello F, Pedrinaci S, Mendez R, Jimenez P, Geraghty DE, Garrido F (2003) Analysis of HLA-E expression in human tumors. Immunogenetics 54:767PubMedGoogle Scholar
  37. 37.
    McClain KL (1997) Immunodeficiency states and related malignancies. Cancer Treat Rev 92:39Google Scholar
  38. 38.
    Mendez R, Serrano A, Jager E, Maleno I, Ruiz Cabello F, Knuth A, Garrido F (2001) Analysis of HLA class I expression in different metastases from two melanoma patients undergoing peptide immunotherapy. Tissue Antigens 57:508CrossRefPubMedGoogle Scholar
  39. 39.
    Meyer T, Arndt R, Nindl I, Ulrich C, Christophers E, Stockfleth E (2003) Association of human papillomavirus infections with cutaneous tumors in immunosuppressed patients. Transpl Int 16:146PubMedGoogle Scholar
  40. 40.
    Moretta A, Bottino C, Vitale M, Pende D, Biassoni R, Mingari MC, Moretta L (1996) Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol 14:619CrossRefPubMedGoogle Scholar
  41. 41.
    Nemes B, Zalatnai A, Podder H, Jaray J, Sotonyi P Jr, Schaff Z, Foldes K, Perner F (2000) Papillary microcarcinoma of the thyroid gland in renal transplant patients. Pathol Oncol Res 6:72PubMedGoogle Scholar
  42. 42.
    Otley CC, Pittelkow MR (2000) Skin cancer in liver transplant recipients. Liver Transpl 6:253PubMedGoogle Scholar
  43. 43.
    Pangault C, Amiot L, Caulet-Maugendre S, Brasseur F, Burtin F, Guilloux V, Drenou B, Fauchet R, Onno M (1999) HLA-G protein expression is not induced during malignant transformation. Tissue Antigens. 53:335Google Scholar
  44. 44.
    Pardoll DM (2003) Does the immune system see tumors as foreign or self? Annual Rev Immunol 21:807CrossRefGoogle Scholar
  45. 45.
    Paul P, Rouas-Freiss N, Khalil-Daher I, Moreau P, Riteau B, Le Gal FA, Avril MF, Dausset J, Guillet JG, Carosella ED (1998) HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci U S A 95:4510CrossRefPubMedGoogle Scholar
  46. 46.
    Pérez M, Algarra I, Ljunggren HG, Caballero A, Mialdea MJ, Gaforio JJ, Garrido F (1990) A weakly tumorigenic phenotype with high MHC class I expression is associated with high metastatic potential after surgical removal of the primary murine fibrosarcoma. Int J Cancer 46:258PubMedGoogle Scholar
  47. 47.
    Prehn RT, Main JM (1957) Immunity to methylcholanthrene induced sarcomas. J Natl Cancer Inst 18:769Google Scholar
  48. 48.
    Real LM, Cabrera T, Collado A, Jimenez P, Garcia A, Ruiz-Cabello F, Garrido F (1999) Expression of HLA G in human tumors is not a frequent event. Int J Cancer 81:512CrossRefPubMedGoogle Scholar
  49. 49.
    Renkvist N, Castelli C, Robbins PF, Parmiani G (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50:3PubMedGoogle Scholar
  50. 50.
    Restifo NP, Antony PA, Finkelstein SE, Leitner WW, Surman D, Theoret MR, Touloukian CE (2002) Assumptions of the tumor ‘escape’ hypothesis. Sem Cancer Biol 12:81CrossRefGoogle Scholar
  51. 51.
    Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Sem Cancer Biol 12:3CrossRefGoogle Scholar
  52. 52.
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Scheriber RD (2001) IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 26:1107CrossRefGoogle Scholar
  53. 53.
    Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA (2000) Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755CrossRefPubMedGoogle Scholar
  54. 54.
    Smyth MJ, Crowe NY, Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459CrossRefPubMedGoogle Scholar
  55. 55.
    Stern PL (1996) Immunity to human papillomavirus associated cervical neoplasia. Adv Cancer Res 69:175PubMedGoogle Scholar
  56. 56.
    Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192CrossRefPubMedGoogle Scholar
  57. 57.
    Stutman O (1979) Chemical carcinogenesis in nude mice: comparison between nude mice from homozygous matings and heterozygous matings and effect of age and carcinogen dose. J Natl Cancer Inst 62:353PubMedGoogle Scholar
  58. 58.
    Svane IM, Engel AM, Nielsen MB, Ljunggren HG, Rygaard J, Werdelin O (1996) Chemically induced sarcomas from nude mice are more immunogenic than similar sarcomas from congenic normal mice. Eur J Immunol 26:1844PubMedGoogle Scholar
  59. 59.
    Thomas L (1959) Discussion of cellular and humoral aspects of the hypersensitivity states. In: Lawrence HS (ed) Cellular and humoral aspects of the hypersensitive states. Hoeber-Harper, New York, p 529Google Scholar
  60. 60.
    Tomasec P, Braud V, Rickards C, Powell M, McSharry B, Gadola S, Cerundolo V, Borysiewicz L, McMichael A, Wilkinson G (2000) Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287:1031CrossRefPubMedGoogle Scholar
  61. 61.
    Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ (1986) The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 28:959Google Scholar
  62. 62.
    van den Broek MF, Kagi D, Zinkernagel RM, Hengartner H (1995) Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur J Immunol 25:3514PubMedGoogle Scholar
  63. 63.
    Van den Eynde BJ, Van der Bruggen P (1997) T cell defined tumor antigens. Curr Opin Immunol 9:684PubMedGoogle Scholar
  64. 64.
    Winter P, Schoeneich G, Miersch WD, Klehr HU (1997) Tumour induction as a consequence of immunosuppression after renal transplantation. Int Urol Nephrol 29:701PubMedGoogle Scholar
  65. 65.
    Yokota J (2000) Tumour progression and metastasis. Carcinogenesis 21:497CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ignacio Algarra
    • 1
  • Angel García-Lora
    • 2
  • Teresa Cabrera
    • 2
  • Francisco Ruiz-Cabello
    • 2
  • Federico Garrido
    • 2
  1. 1.Departamento de Ciencias de La SaludUniversidad de JaénJaénSpain
  2. 2.Servicio de Análisis Clínicos, Hospital Universitario Virgen de las NievesUniversidad de GranadaGranadaSpain

Personalised recommendations