Cancer Immunology, Immunotherapy

, Volume 53, Issue 2, pp 64–72 | Cite as

Derangement of immune responses by myeloid suppressor cells

  • Paolo Serafini
  • Carmela De Santo
  • Ilaria Marigo
  • Sara Cingarlini
  • Luigi Dolcetti
  • Giovanna Gallina
  • Paola Zanovello
  • Vincenzo BronteEmail author
Symposium in Writing


In tumor-bearing mice and cancer patients, tumor progression is often associated with altered hematopoiesis leading to the accumulation of myeloid cells. Extensive studies in preclinical models indicate that these cells share the CD11b and the Gr-1 markers, possess a mixed mature-immature myeloid phenotype, and are responsible for the induction of T-cell dysfunctions, both tumor-specific and nonspecific. Moreover, CD11b+Gr-1+ myeloid cells are described under different unrelated situations associated with temporary impairment of the T-lymphocyte reactivity. This review examines recent findings on the nature, properties, and mechanisms of action of these myeloid suppressor cells (MSCs).


Nitric Oxide Natural Killer Cell Major Histocompatibility Complex Class Arginase Lymphoid Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Kimberly Noonan for her critical reading of the manuscript.


  1. 1.
    Ahlers JD, Belyakov IM, Terabe M, Koka R, Donaldson DD, Thomas EK, Berzofsky JA (2002) A push-pull approach to maximize vaccine efficacy: abrogating suppression with an IL-13 inhibitor while augmenting help with granulocyte/macrophage colony-stimulating factor and CD40L. Proc Natl Acad Sci U S A 99:13020PubMedGoogle Scholar
  2. 2.
    al Ramadi BK, Greene JM, Meissler JJ Jr, Eisenstein TK (1992) Immunosuppression induced by attenuated Salmonella: effect of LPS responsiveness on development of suppression. Microb Pathog 12:267PubMedGoogle Scholar
  3. 3.
    Albina JE, Abate JA, Mastrofrancesco B (1993) Role of ornithine as a proline precursor in healing wounds. J Surg Res 55:97PubMedGoogle Scholar
  4. 4.
    Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755PubMedGoogle Scholar
  5. 5.
    Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678PubMedGoogle Scholar
  6. 6.
    Angulo I, de las Heras FG, Garcia-Bustos JF, Gargallo D, Munoz-Fernandez MA, Fresno M (2000) Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood 95:212PubMedGoogle Scholar
  7. 7.
    Angulo I, Rullas J, Campillo JA, Obregon E, Heath A, Howard M, Munoz-Fernandez MA, Subiza JL (2000) Early myeloid cells are high producers of nitric oxide upon CD40 plus IFN-gamma stimulation through a mechanism dependent on endogenous TNF-alpha and IL-1alpha. Eur J Immunol 30:1263PubMedGoogle Scholar
  8. 8.
    Anichini A, Molla A, Mortarini R, Tragni G, Bersani I, Di Nicola M, Gianni AM, Pilotti S, Dunbar R, Cerundolo V, Parmiani G (1999) An expanded peripheral T cell population to a cytotoxic T lymphocyte (CTL)-defined, melanocyte-specific antigen in metastatic melanoma patients impacts on generation of peptide-specific CTLs but does not overcome tumor escape from immune surveillance in metastatic lesions. J Exp Med 190:651PubMedGoogle Scholar
  9. 9.
    Apolloni E, Bronte V, Mazzoni A, Serafini P, Cabrelle A, Segal DM, Young HA, Zanovello P (2000) Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes. J Immunol 165:6723PubMedGoogle Scholar
  10. 10.
    Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, Dezutter-Dambuyant C, Vicari A, O’Garra A, Biron C, Briere F, Trinchieri G (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2:1144CrossRefPubMedGoogle Scholar
  11. 11.
    Berzofsky JA, Ahlers JD, Belyakov IM (2001) Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol 1:209PubMedGoogle Scholar
  12. 12.
    Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M (2003) Transient expansion of Mac1+ Ly6-G+ Ly6-C+ early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 3:3Google Scholar
  13. 13.
    Bobe P, Benihoud K, Grandjon D, Opolon P, Pritchard LL, Huchet R (1999) Nitric oxide mediation of active immunosuppression associated with graft-versus-host reaction. Blood 94:1028PubMedGoogle Scholar
  14. 14.
    Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, Radi R, Cayota AM (1999) Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 162:3356PubMedGoogle Scholar
  15. 15.
    Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, Restifo NP (1998) Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 161:5313PubMedGoogle Scholar
  16. 16.
    Bronte V, Chappel DB, Apolloni E, Cabrelle A, Wang M, Hwu P, Restifo NP (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162:5728PubMedGoogle Scholar
  17. 17.
    Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini A, Zamboni P, Restifo NP, Zanovello P (2000) Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood 96:3838PubMedGoogle Scholar
  18. 18.
    Bronte V, Serafini P, Apolloni E, Zanovello P (2001) Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother 24:431CrossRefPubMedGoogle Scholar
  19. 19.
    Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, Segal DM, Staib C, Lowel M, Sutter G, Colombo MP, Zanovello P (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor- bearing mice. J Immunol 170:270PubMedGoogle Scholar
  20. 20.
    Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P (2003) L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24:301CrossRefGoogle Scholar
  21. 21.
    Cauley LS, Miller EE, Yen M, Swain SL (2000) Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-gamma. J Immunol 165:6056PubMedGoogle Scholar
  22. 22.
    Chang CI, Liao JC, Kuo L (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res 61:1100PubMedGoogle Scholar
  23. 23.
    Colleluori DM, Ash DE (2001) Classical and slow-binding inhibitors of human type II arginase. Biochemistry 40:9356PubMedGoogle Scholar
  24. 24.
    de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJ, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH (2002) Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 110:1539PubMedGoogle Scholar
  25. 25.
    Fleming TJ, Fleming ML, T. R. Malek TR (1993) Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. J Immunol 151:2399PubMedGoogle Scholar
  26. 26.
    Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM. (2001) Mechanism of immune dysfunction in cancer mediated by immature gr-1(+) myeloid cells. J Immunol 166:5398PubMedGoogle Scholar
  27. 27.
    Garrity T, Pandit R, Wright MA, Benefield J, Keni S, Young MR (1997) Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int J Cancer 73:663PubMedGoogle Scholar
  28. 28.
    Geldhof AB, Van Ginderachter JA, Liu Y, Noel W, Raes G, De Baetselier P (2002) Antagonistic effect of NK cells on alternatively activated monocytes: a contribution of NK cells to CTL generation. Blood 100:4049PubMedGoogle Scholar
  29. 29.
    Goni O, Alcaide P, Fresno M (2002) Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1(+))CD11b(+ )immature myeloid suppressor cells. Int Immunol 14:1125PubMedGoogle Scholar
  30. 30.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23PubMedGoogle Scholar
  31. 31.
    Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ (2000) Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404:407PubMedGoogle Scholar
  32. 32.
    Horiguchi S, Petersson M, Nakazawa T, Kanda M, Zea AH, Ochoa AC, Kiessling R (1999) Primary chemically induced tumors induce profound immunosuppression concomitant with apoptosis and alterations in signal transduction in T cells and NK cells. Cancer Res 59:2950PubMedGoogle Scholar
  33. 33.
    Jaffe ML, Arai H, Nabel GJ (1996) Mechanisms of tumor-induced immunosuppression: evidence for contact-dependent T cell suppression by monocytes. Mol Med 2:692PubMedGoogle Scholar
  34. 34.
    Kiessling R, Wasserman K, Horiguchi S, Kono K, Sjoberg J, Pisa P, Petersson M (1999) Tumor-induced immune dysfunction. Cancer Immunol Immunother 48:353CrossRefPubMedGoogle Scholar
  35. 35.
    Kobayashi M, Kobayashi H, Pollard RB, Suzuki F(1998) A pathogenic role of Th2 cells and their cytokine products on the pulmonary metastasis of murine B16 melanoma. J Immunol 160:5869PubMedGoogle Scholar
  36. 36.
    Koblish HK, Hunter CA, Wysocka M, Trinchieri G, Lee WM (1998) Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J Exp Med 188:1603CrossRefPubMedGoogle Scholar
  37. 37.
    Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, Nakazawa T, Anderson P, Kiessling R (1996) Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell- and natural killer cell-mediated cytotoxicity. Eur J Immunol 26:1308PubMedGoogle Scholar
  38. 38.
    Korsgren M, Persson CG, Sundler F, Bjerke T, Hansson T, Chambers BJ, Hong S, Van Kaer L, Ljunggren HG, Korsgren O (1999) Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J Exp Med 189:553PubMedGoogle Scholar
  39. 39.
    Kos FJ (1998) Regulation of adaptive immunity by natural killer cells. Immunol Res 17:303PubMedGoogle Scholar
  40. 40.
    Kusmartsev S, Gabrilovich DI (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51:293PubMedGoogle Scholar
  41. 41.
    Kusmartsev SA, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165:779PubMedGoogle Scholar
  42. 42.
    Lagasse E, Weissman IL (1996) Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods 197:139PubMedGoogle Scholar
  43. 43.
    Lee KH, Wang E, Nielsen MB, Wunderlich J, Migueles S, Connors M, Steinberg SM, Rosenberg SA, Marincola FM (1999) Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 163:6292PubMedGoogle Scholar
  44. 44.
    Leenen PJ, de Bruijn MF, Voerman JS, Campbell PA, van Ewijk W (1994) Markers of mouse macrophage development detected by monoclonal antibodies. J Immunol Methods 174:5PubMedGoogle Scholar
  45. 45.
    Leite-de-Moraes MC, Lisbonne M, Arnould A, Machavoine F, Herbelin A, Dy M, Schneider E (2002) Ligand-activated natural killer T lymphocytes promptly produce IL-3 and GM-CSF in vivo: relevance to peripheral myeloid recruitment. Eur J Immunol 32:1897PubMedGoogle Scholar
  46. 46.
    Liu Y, Van Ginderachter JA, Brys L, De Baetselier P, Raes G, Geldhof AB (2003) Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol 170:5064PubMedGoogle Scholar
  47. 47.
    Maier T, Holda JH, Claman HN (1989) Natural suppressor cells. Prog Clin Biol Res 288:235PubMedGoogle Scholar
  48. 48.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549PubMedGoogle Scholar
  49. 49.
    Marshall MA, Jankovic D, Maher VE, Sher A, Berzofsky JA (2001) Mice infected with Schistosoma mansoni develop a novel non-T-lymphocyte suppressor population which inhibits virus-specific CTL induction via a soluble factor. Microbes Infect 3:1051PubMedGoogle Scholar
  50. 50.
    Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689PubMedGoogle Scholar
  51. 51.
    McKnight AJ, Gordon S (1998) Membrane molecules as differentiation antigens of murine macrophages. Adv Immunol 68:271PubMedGoogle Scholar
  52. 52.
    Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 15:15Google Scholar
  53. 53.
    Mellstedt H, Fagerberg J, Frodin JE, Henriksson L, Hjelm-Skoog AL, Liljefors M, Ragnhammar P, Shetye J, Osterborg A (1999) Augmentation of the immune response with granulocyte-macrophage colony-stimulating factor and other hematopoietic growth factors. Curr Opin Hematol 6:169PubMedGoogle Scholar
  54. 54.
    Mencacci A, Montagnoli C, Bacci A, Cenci E, Pitzurra L, Spreca A, Kopf M, Sharpe AH, Romani L (2002) CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunol 169:3180PubMedGoogle Scholar
  55. 55.
    Mills CD, Shearer J, Evans R, Caldwell MD (1992) Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol 149:2709PubMedGoogle Scholar
  56. 56.
    Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166PubMedGoogle Scholar
  57. 57.
    Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328PubMedGoogle Scholar
  58. 58.
    Nielsen MB, Marincola FM (2000) Melanoma vaccines: the paradox of T cell activation without clinical response. Cancer Chemother Pharmacol 46:S62PubMedGoogle Scholar
  59. 59.
    Ochoa JB, Strange J, Kearney P, Gellin G, Endean E, Fitzpatrick E (2001) Effects of L-arginine on the proliferation of T lymphocyte subpopulations. JPEN J Parenter Enteral Nutr 25:23PubMedGoogle Scholar
  60. 60.
    O’Keeffe M, Hochrein H, Vremec D, Caminschi I, Miller JL, Anders EM, Wu L, Lahoud MH, Henri S, Scott B, Hertzog P, Tatarczuch L, Shortman K (2002) Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 196:1307CrossRefPubMedGoogle Scholar
  61. 61.
    Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MRI (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1:95PubMedGoogle Scholar
  62. 62.
    Pelaez B, Campillo JA, Lopez-Asenjo JA, Subiza JL (2001) Cyclophosphamide induces the development of early myeloid cells suppressing tumor cell growth by a nitric oxide-dependent mechanism. J Immunol 166:6608PubMedGoogle Scholar
  63. 63.
    Pericle F, Kirken RA, Bronte V, Sconocchia G, DaSilva L, Segal DM (1997) Immunocompromised tumor-bearing mice show a selective loss of STAT5a/b expression in T and B lymphocytes. J Immunol 159:2580PubMedGoogle Scholar
  64. 64.
    Prins HA, Houdijk AP, Nijveldt RJ, Teerlink T, Huygens P, Thijs LG, van Leeuwen PA (2001) Arginase release from red blood cells: possible link in transfusion induced immune suppression? Shock 16:113PubMedGoogle Scholar
  65. 65.
    Prins RM, Scott GP, Merchant RE, Graf MR (2002) Irradiated tumor cell vaccine for treatment of an established glioma. II. Expansion of myeloid suppressor cells that promote tumor progression. Cancer Immunol Immunother 51:190PubMedGoogle Scholar
  66. 66.
    Radoja S, Rao TD, Hillman D, Frey AB (2000) Mice bearing late-stage tumors have normal functional systemic T cell responses in vitro and in vivo. J Immunol 164:2619PubMedGoogle Scholar
  67. 67.
    Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem 277:21123PubMedGoogle Scholar
  68. 68.
    Saio M, Radoja S, Marino M, Frey AB (2001) Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol 167:5583PubMedGoogle Scholar
  69. 69.
    Salvadori S, Martinelli G, Zier K (2000) Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol 164:2214PubMedGoogle Scholar
  70. 70.
    Seo N, Hayakawa S, Takigawa M, Tokura Y (2001) Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4(+) T-regulatory cells and systemic collapse of antitumour immunity. Immunology 103:449PubMedGoogle Scholar
  71. 71.
    Seung LP, Rowley DA, Dubey P, Schreiber H (1995) Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci U S A 92:6254PubMedGoogle Scholar
  72. 72.
    Smyth MJ, Godfrey DI (2000) NKT cells and tumor immunity--a double-edged sword. Nat Immunol 1:459PubMedGoogle Scholar
  73. 73.
    Strober S (1984) Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol 2:219PubMedGoogle Scholar
  74. 74.
    Subiza JL, Vinuela JE, Rodriguez R, Gil J, Figueredo MA, De La Concha EG (1989) Development of splenic natural suppressor (NS) cells in Ehrlich tumor-bearing mice. Int J Cancer 44:307PubMedGoogle Scholar
  75. 75.
    Suh H, Wadhwa NK, Peresleni T, McNurlan M, Garlick P, Goligorsky MS (1997) Decreased L-arginine during peritonitis in ESRD patients on peritoneal dialysis. Adv Perit Dial 13:205PubMedGoogle Scholar
  76. 76.
    Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH, Bukowski RM, Mueller-Berghaus J, Kirkwood JM, Kwok WW, Storkus WJ (2002) Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 196:619PubMedGoogle Scholar
  77. 77.
    Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, Carbone DP, Paul WE, Berzofsky JA (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1:515PubMedGoogle Scholar
  78. 78.
    Terrazas LI, Walsh KL, Piskorska D, McGuire E, Harn DA Jr (2001) The schistosome oligosaccharide lacto-N-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections. J Immunol 167:5294PubMedGoogle Scholar
  79. 79.
    Toi M, Taniguchi T, Yamamoto Y, Kurisaki T, Suzuki H, Tominaga T (1996) Clinical significance of the determination of angiogenic factors. Eur J Cancer 32A:2513PubMedGoogle Scholar
  80. 80.
    Vallance P, Leiper J (2002) Blocking NO synthesis: how, where and why? Nat Rev Drug Discov 1:939PubMedGoogle Scholar
  81. 81.
    Warren TL, Weiner GJ (2000) Uses of granulocyte-macrophage colony-stimulating factor in vaccine development. Curr Opin Hematol 7:168Google Scholar
  82. 82.
    Wright MA, Wiers K, Vellody K, Djordjevic D, Young MR (1998) Stimulation of immune suppressive CD34+ cells from normal bone marrow by Lewis lung carcinoma tumors. Cancer Immunol Immunother 46:253PubMedGoogle Scholar
  83. 83.
    Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1PubMedGoogle Scholar
  84. 84.
    Young MR, Ihm J, Lozano Y, Wright MA, Prechel MM (1995) Treating tumor-bearing mice with vitamin D3 diminishes tumor- induced myelopoiesis and associated immunosuppression, and reduces tumor metastasis and recurrence. Cancer Immunol Immunother 41:37PubMedGoogle Scholar
  85. 85.
    Young MR, Lozano Y, Ihm J, Wright MA, Prechel MM (1996) Vitamin D3 treatment of tumor bearers can stimulate immune competence and reduce tumor growth when treatment coincides with a heightened presence of natural suppressor cells. Cancer Lett 104:153PubMedGoogle Scholar
  86. 86.
    Young MR, Wright MA, Matthews JP, Malik I, Prechel M (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J Immunol 156:1916PubMedGoogle Scholar
  87. 87.
    Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, Collins SL, Petruzzelli GJ (1997) Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer 74:69PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Paolo Serafini
    • 1
  • Carmela De Santo
    • 1
  • Ilaria Marigo
    • 1
  • Sara Cingarlini
    • 1
  • Luigi Dolcetti
    • 1
  • Giovanna Gallina
    • 1
  • Paola Zanovello
    • 1
  • Vincenzo Bronte
    • 1
    Email author
  1. 1.Department of Oncology and Surgical Sciences, Oncology SectionAzienda OspedalieraPadovaItaly

Personalised recommendations