Advertisement

Prostate magnetic resonance imaging technique

  • 128 Accesses

Abstract

Multiparametric magnetic resonance (MR) imaging of the prostate is an excellent tool to detect clinically significant prostate cancer, and it has widely been incorporated into clinical practice due to its excellent tissue contrast and image resolution. The aims of this article are to describe the prostate MR imaging technique for detection of clinically significant prostate cancer according to PI-RADS v2.1, as well as alternative sequences and basic aspects of patient preparation and MR imaging artifact avoidance.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Cabarrus MC, Westphalen AC (2017) Multiparametric magnetic resonance imaging of the prostate—a basic tutorial. Transl Androl Urol 6:376–386

  2. 2.

    Epstein JI, Walsh PC, Carmichael M, Brendler CB (1994) Pathologic and Clinical Findings to Predict Tumor Extent of Nonpapable (Stage T1c) Prostate Cancer. JAMA 271:368–374

  3. 3.

    Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, Grading Committee (2016) The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol 40:244–252

  4. 4.

    Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, Rouviere, Logager V, Fütterer JJ (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757

  5. 5.

    American College of Radiology. MR Prostate Imaging Reporting and Data System version 2.0 (2015). http://www.acr.org/Quality-Safety/Re-sources/PIRADS/. Acessed 24 August 2019

  6. 6.

    Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Tempany CM, Choyke PL, Cornud F, Margolis DJ, Thoeny HC, Verma Barentsz J, Weinreb JC (2019) Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol 76;340–351

  7. 7.

    Dewey M, Schink T, Dewey CF (2007) Claustrophobia during magnetic resonance imaging: Cohort study in over 55,000 patients. JMRI 26:1322–1327

  8. 8.

    Enders J, Zimmermann E, Rief M, Martus P, Klingebiel R, Asbach P, Klessen C, Diederichs G, Bengner T, TeichgräberU, Hamm B, Dewey M (2011) Reduction of claustrophobia during magnetic resonance imaging: methods and design of the “CLAUSTRO” randomized controlled trial. BMC Medical Imaging 11:1-15

  9. 9.

    Munn Z, Moola S, Lisy K, Riitano D, Murphy F (2015). Claustrophobia in magnetic resonance imaging: A systematic review and meta-analysis. Radiography 21:e59–e63

  10. 10.

    Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Tempany CM, Choyke PL, Cornud F, Margolis DJ, Thoeny HC, Verma S, Barentsz J, Weinreb JC. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur Urol. 2019. pii: S0302-2838(19)30180-0

  11. 11.

    Zand KR, Reinhold C, Haider MA, Nakai A, Rohoman L, Maheshwari S (2007) Artifacts and pitfalls in MR imaging of the pelvis. JMRI 26:480–497

  12. 12.

    Venkatanarasimha N, Jenkins SJ, Yang N, Colak E, Kirpalani A (2013) Impact of butylscopolamine on image quality of magnetic resonance cholangiopancreatography. EJR 82:583–588

  13. 13.

    Slough RA, Caglic I, Hansen NL, Patterson AJ, Barrett T (2018). Effect of hyoscine butylbromide on prostate multiparametric MRI anatomical and functional image quality. Clin Radiol 73:216.e9–216.e14

  14. 14.

    Ullrich T, Quentin M, Schmaltz AK, Arsov C, Rubbert C, Blondin D, Rabenalt R, Albers P, Antoch G, Schimmöller L (2017) Hyoscine butylbromide significantly decreases motion artefacts and allows better delineation of anatomic structures in mp-MRI of the prostate. Eur Radiol 28:17-23

  15. 15.

    Wagner M, Rief M, Busch J, Scheurig C, Taupitz M, Hamm B, Franiel T (2010) Effect of butylscopolamine on image quality in MRI of the prostate. Clin Radiol 65:460–464

  16. 16.

    Kabakus IM, Borofsky S, Mertan FV, Greer M, Daar D, Wood BJ, Pinto PA, Choyke PL, Turkbey B (2016) Does Abstinence From Ejaculation Before Prostate MRI Improve Evaluation of the Seminal Vesicles? AJR 207:1205–1209

  17. 17.

    MD CS. Re: Does Abstinence from Ejaculation before Prostate MRI Improve Evaluation of the Seminal Vesicles? Journal of Urology. American Urological Association Education and Research, Inc; 2017 Jun 1;197(6):1536.

  18. 18.

    Siegel C (2017). Re: Does Abstinence from Ejaculation before Prostate MRI Improve Evaluation of the Seminal Vesicles? J Urol 197:1536

  19. 19.

    Shin T, Kaji Y, Shukuya T, Nozaki M, Soh S, Okada H (2018) Significant changes of T2 value in the peripheral zone and seminal vesicles after ejaculation. Eur Radiol 28:1009–1015

  20. 20.

    Starobinets O, Korn N, Iqbal S, Noworolski SM, Zagoria R, Kurhanewicz J, Westphalen AC (2016) Practical aspects of prostate MRI: hardware and software considerations, protocols, and patient preparation. Abdom Radiol 41:817–830

  21. 21.

    Gold GE, Suh B, Sawyer-Glover A, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: initial clinical experience. AJR 183(5):1479–1486

  22. 22.

    de Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC (2004) MR Imaging Relaxation Times of Abdominal and Pelvic Tissues Measured in Vivo at 3.0 T: Preliminary Results. Radiology 230:652–659

  23. 23.

    Beyersdorff D, Taymoorian K, Knösel T, Schnorr D, Felix R, Hamm B, Bruhn H (2005) MRI of Prostate Cancer at 1.5 and 3.0 T: Comparison of Image Quality in Tumor Detection and Staging. AJR 185:1214–1220

  24. 24.

    Ullrich T, Quentin M, Oelers C, Dietzel F, Sawicki LM, Arsov C, Rabenalt R, Albers P, Antoch C, Blondin D, Wittsack HJ, Schimmöller L (2017) Magnetic resonance imaging of the prostate at 1.5 versus 3.0T: A prospective comparison study of image quality. Eur J Radiol 90:192–19725

  25. 25.

    Schnall MD, Lenkinski RE, Pollack HM, Imai Y, Kressel HY. Prostate: MR imaging with an endorectal surface coil. Radiology. 1989 Aug;172(2):570–4.

  26. 26.

    Margolis DJA (2014) Multiparametric MRI for Localized Prostate Cancer: Lesion Detection and Staging. BioMed Res 2014:68412727.

  27. 27.

    Gawlitza J, Reiss-Zimmermann M, Thörmer G, Schaudinn A, Linder N, Garnov N, Horn LC, Minh DH, Ganzer R, Stolzenburg JU, Kahn T, Moche T, Busse H (2017) Impact of the use of an endorectal coil for 3 T prostate MRI on image quality and cancer detection rate. Sci Rep 7(1):331–338

  28. 28.

    Costa DN, Yuan Q, Xi Y, Rofsky NM, Lenkinski RE, Lotan Y, Roehrborn CG, Francis F, Travalini D, Pedrosa I (2016). Comparison of prostate cancer detection at 3-T MRI with and without an endorectal coil_ A prospective, paired-patient study. Urol Oncol Sem Ori 34:255.e7–255.e13

  29. 29.

    Kim BS, Kim T-H, Kwon TG, Yoo ES (2012). Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer. Yonsei Med J 53:550–557.

  30. 30.

    Torricelli P, Cinquantini F, Ligabue G, Bianchi G, Sighinolfi P, Romagnoli R (2006) Comparative evaluation between external phased array coil at 3 T and endorectal coil at 1.5 T: preliminary results. JCAT 30:355–361

  31. 31.

    Shah ZK, Elias SN, Abaza R, Zynger DL, DeRenne LA, Knopp MV, Guo B, Schurr R, Heymsfield SB, Jia G (2015) Performance Comparison of 1.5-T Endorectal Coil MRI with 3.0-T Nonendorectal Coil MRI in Patients with Prostate Cancer. Acad Radiol 22:467–474

  32. 32.

    Wilder RB, Chittenden L, Mesa AV, Bunyapansarn J, Agustin J, Lizarde J, Ravera J, Tokita KM (2010) A Prospective Study of Intrafraction Prostate Motion in the Prone vs. Supine Position. Int J Radiation Oncology Biol Phys 77:165–170

  33. 33.

    Tamada T, Sone T, Jo Y, Yamamoto A, Yamashita T, Egashira N, Imai S Fukunaka M (2008) Prostate Cancer: Relationships between Postbiopsy Hemorrhage and Tumor Detectability at MR Diagnosis. Radiology 248:531–539

  34. 34.

    White S, Hricak H, Forstner R, Kurhanewicz J, Vigneron DB, Zaloudek CJ, Weiss JM, Narayan P, Carroll PR (1995) Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images. Radiology 195:385–390

  35. 35.

    Pasoglou V, Michoux N, Peeters F, Larbi A, Tombal B, Selleslagh T, Omoumi P, Vande Berg BC, Lecouvet FE (2015) Whole-Body 3D T1-weighted MR Imaging in Patients with Prostate Cancer: Feasibility and Evaluation in Screening for Metastatic Disease. Radiology 275:155–166

  36. 36.

    Kuhl CK, Bruhn R, Krämer N, Nebelung S, Heidenreich A, Schrading S (2017) Abbreviated Biparametric Prostate MR Imaging in Men with Elevated Prostate-specific Antigen. Radiology 285:493–505

  37. 37.

    Rosenkrantz AB, Neil J, Kong X, Melamed J, Babb JS, Taneja SS, Taouli B (2010) Prostate Cancer: Comparison of 3D T2-Weighted With Conventional 2D T2-Weighted Imaging for Image Quality and Tumor Detection. AJR 194:446–452

  38. 38.

    Westphalen AC, Noworolski SM, Harisinghani M, Jhaveri KS, Raman SS, Rosenkrantz AB, Wang ZJ, Zagoria RJ, Kurhanewicz J (2016) High-Resolution 3-T Endorectal Prostate MRI: A Multireader Study of Radiologist Preference and Perceived Interpretive Quality of 2D and 3D T2-Weighted Fast Spin-Echo MR Images. AJR 206:86–91

  39. 39.

    Turkbey B, Shah VP, Pang Y, Bernardo M, Xu S, Kruecker J, Locklin J, Baccala Jr AA, Rastinehad AR, Merino MJ, Shih JH, Wood BJ, Pinto PA, Choyke PL (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 258:488–495

  40. 40.

    Rosenkrantz AB, Chandarana H, Hindman N, Deng F-M, Babb JS, Taneja SS, Geppert C (2013) Computed diffusion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection. Eur Radiol 23:3170–3177

  41. 41.

    Rosenkrantz AB, Hindman N, Lim RP, Das K, Babb JS, Mussi TC, Taneja S (2013) Diffusion-weighted imaging of the prostate: Comparison of b1000 and b2000 image sets for index lesion detection. JMRI 38:694–700

  42. 42.

    Hambrock T, Somford DM, Huisman HJ, van Oort IM, Witjes JA, Hulsbergen-van de Kaa CA, Scheenen T, Barentsz JO (2011) Relationship between Apparent Diffusion Coefficients at 3.0-T MR Imaging and Gleason Grade in Peripheral Zone Prostate Cancer. Radiology 259:453–461

  43. 43.

    Kim CK, Park BK, Kim B (2010) Diffusion-Weighted MRI at 3 T for the Evaluation of Prostate Cancer. AJR 194:1461–1469

  44. 44.

    Ueno Y, Takahashi S, Ohno Y, Kitajima K, Yui M, Kassai Y, Kawakami F, Miyake H, Sugimura K (2015) Computed diffusion-weighted MRI for prostate cancer detection: the influence of the combinations of b-values. BJR 88:20140738

  45. 45.

    Metens T, Miranda D, Absil J, Matos C (2011) What is the optimal b value in diffusion-weighted MR imaging to depict prostate cancer at 3T? Eur Radiol 22:703–709

  46. 46.

    Wang X, Qian Y, Liu B, Cao L, Fan Y, Zhang JJ, Yu Y (2014) High-b-value diffusion-weighted MRI for the detection of prostate cancer at 3T. Clin Radiol 69:1165–1170

  47. 47.

    Rosenkrantz AB, Kim S, Campbell N, Gaing B, Deng F-M, Taneja SS (2015) Transition Zone Prostate Cancer: Revisiting the Role of Multiparametric MRI at 3 T. AJR 204:W266–W272

  48. 48.

    Bittencourt LK, Attenberger UI, Lima D, Strecker R, Oliveira A, Schoenberg SO, Gasparetto EL, Hasumann D(2014) Feasibility study of computed vsmeasured high b-value (1400 s/mm²) diffusion-weighted MR images of the prostate. World J Radiol 6:374–378

  49. 49.

    Grant KB, Agarwal HK, Shih JH, Bernardo M, Pang Y, Daar D, Merino MJ, Wood BJ, Pinto PA, Choyke PL, Turkbey B (2015) Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom Imaging 40:578–586

  50. 50.

    Koh D-M, Collins DJ, Orton MR (2011) Intravoxel Incoherent Motion in Body Diffusion-Weighted MRI: Reality and Challenges. AJR 196:1351–1361

  51. 51.

    Feng Z, Min X, Margolis DJA, Duan C, Chen Y, Sah VK, Chaudhary N, Li B, Ke Z, Zhang P, Wang L (2017) Evaluation of different mathematical models and different b-value ranges of diffusion-weighted imaging in peripheral zone prostate cancer detection using b-value up to 4500 s/mm2. PLoS ONE 12:e0172127–15

  52. 52.

    Koh D-M, Collins DJ (2007) Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. AJR 188:1622–1635

  53. 53.

    Tamada T, Sone T, Jo Y, Toshimitsu S, Yamashita T, Yamamoto A, Tanimoto D, Ito K (2008) Apparent diffusion coefficient values in peripheral and transition zones of the prostate: Comparison between normal and malignant prostatic tissues and correlation with histologic grade. JMRI 28:720–726

  54. 54.

    Liu X, Peng W, Zhou L, Wang H (2013) Biexponential apparent diffusion coefficients values in the prostate: comparison among normal tissue, prostate cancer, benign prostatic hyperplasia and prostatitis. Korean J Radiol 14:222–232

  55. 55.

    Jambor I, Merisaari H, Aronen HJ, Järvinen J, Saunavaara J, Kauko T, Borra R, Pesola M (2013) Optimization of b-value distribution for biexponential diffusion-weighted MR imaging of normal prostate. JMRI 39:1213–1222

  56. 56.

    Shinmoto H, Tamura C, Soga S, Shiomi E, Yoshihara N, Kaji T, Mulkern RV (2012) An Intravoxel Incoherent Motion Diffusion-Weighted Imaging Study of Prostate Cancer. AJR 199:W496–W500

  57. 57.

    Rosenkrantz AB, Sigmund EE, Johnson G, Babb JS, Mussi TC, Melamed J, Taneja SS, Lee VS, Jensen JH (2012) Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 264:126–135

  58. 58.

    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

  59. 59.

    Le Bihan D (2019) What can we see with IVIM MRI? NeuroImage 187:56–67

  60. 60.

    Fournet G, Li J-R, Cerjanic AM, Sutton BP, Ciobanu L, Le Bihan D (2017) A two-pool model to describe the IVIM cerebral perfusion. J Cereb Blood Flow Metab 37:2987–3000

  61. 61.

    Maurer MH, Heverhagen JT (2017) Diffusion weighted imaging of the prostate—principles, application, and advances. Transl Androl Urol 6:490–498

  62. 62.

    White NS, Leergaard TB, D'Arceuil H, Bjaalie JG, Dale AM (2013) Probing tissue microstructure with restriction spectrum imaging: Histological and theoretical validation. Hum Brain Mapp 34:327–346

  63. 63.

    Brunsing RL, Schenker-Ahmed NM, White NS, Parsons JK, Kane C, Kuperman J, Bartsch H, Kader AK, Rakow-Penner R, Seibert TM, Margolis D, Raman SS, McDonald CR, Farid N, Kesari S, Hansel D, Shabaik A, Dale AM Karow DS (2017) Restriction spectrum imaging: An evolving imaging biomarker in prostate MRI. JMRI 45:323–336

  64. 64.

    McDonald CR, Delfanti RL, Krishnan AP, Leyden KM, Hattangadi-Gluth JA, Seibert TM, Karunamuni R, Elbe P, Kuperman JM, Bartsch H, Piccioni DE, White NS, Dale AM, Farid N (2016) Restriction spectrum imaging predicts response to bevacizumab in patients with high-grade glioma. Neuro Oncol. 461579–1590

  65. 65.

    McCammack KC, Schenker-Ahmed NM, White NS, Best SR, Marks RM, Heimbigner J, Kane CJ, Parsons JK, Kuperman JM, Bartsch H, Desikan RS, Rakow-Penner RA, Liss MA, Margolis DJA, Raman SS, Shabaik A, Dale AM, Karow DS (2016) Restriction spectrum imaging improves MRI-based prostate cancer detection. Abd Radiol 41:946–953

  66. 66.

    Verma S, Turkbey B, Muradyan N, Rajesh A, Cornud F, Haider MA, Choyke PL, Harisinghani M (2012) Overview of Dynamic Contrast-Enhanced MRI in Prostate Cancer Diagnosis and Management. AJR 198:1277–1288

  67. 67.

    Hansford BG, Peng Y, Jiang Y, Vannier MW, Antic T, Thomas S, McCann S, Oto A (2015) Dynamic Contrast-enhanced MR Imaging Curve-type Analysis: Is It Helpful in the Differentiation of Prostate Cancer from Healthy Peripheral Zone? Radiology 275:448–457

  68. 68.

    Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. JMRI 7:91–101

  69. 69.

    Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

  70. 70.

    Parra AN, Lu H, Li Q, Stoyanova R, Pollack A, Punnen S, Choi J, Abdalah M, Lopez C, Gage K, Park JY, Kosj Y, Pow-Sang JM, Gillies RJ, Balagurunathan Y (2018) Predicting clinically significant prostate cancer using DCE-MRI habitat descriptors. Oncotarget 9:37125–37136

  71. 71.

    Fennessy FM, Fedorov A, Gupta SN, Schmidt EJ, Tempany CM, Mulkern RV (2012) Practical considerations in T1 mapping of prostate for dynamic contrast enhancement pharmacokinetic analyses. Magn Reson Imaging 30:1224–1233

  72. 72.

    Kingsley PB (1999) Methods of measuring spin-lattice (T1) relaxation times: an annotated bibliography. Concepts in Magnetic Resonance 11(4);243–276

  73. 73.

    Treier R, Steingoetter A, Fried M, Schwizer W, Boesiger P (2007) Optimized and combined T1 and B1 mapping technique for fast and accurateT1 quantification in contrast-enhanced abdominal MRI. Magn Reson Med 57(3):568–576

  74. 74.

    Cheng H-LM, Wright GA (2006) Rapid high-resolutionT1 mapping by variable flip angles: Accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 55(3):566–574

  75. 75.

    Rais-Bahrami S, Siddiqui MM, Vourganti S, Turkbey B, Rastinehad AR, Stamatakis L, Truong H, Walton-Diaz A, Hoang AN, Nix JW, Merino MJ, Wood BJ, Simon RM, Choyke PL, Pinto PA (2014) Diagnostic value of biparametric magnetic resonance imaging (MRI) as an adjunct to prostate-specific antigen (PSA)-based detection of prostate cancer in men without prior biopsies. BJU Int 115:381–388

  76. 76.

    Fascelli M, Rais-Bahrami S, Sankineni S, Brown AM, George AK, Ho R, Frye T, Kilchevsky A, Chelluri R,
 Abboud S, Siddiqui MM, Merino MJ, Wood BJ, Choyke PL, Pinto PA, Turkbey B (2016) Combined Biparametric Prostate Magnetic Resonance Imaging and Prostate-specific Antigen in the Detection of Prostate Cancer: A Validation Study in a Biopsy-naive Patient Population. Urology 88:125–134

  77. 77.

    Mussi TC, Martins T, Garcia RG, Filippi RZ, Lemos GC, Baroni RH (2016) Are Dynamic Contrast-Enhanced Images Necessary for Prostate Cancer Detection on Multiparametric Magnetic Resonance Imaging? Clin Genitourinary Cancer 15:e447–e454

  78. 78.

    Tanimoto A, Nakashima J, Kohno H, Shinmoto H, Kuribayashi S (2007) Prostate cancer screening: The clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. JMRI 25:146–152

  79. 79.

    Greer MD, Shih JH, Lay N, Barrett T, Kayat Bittencourt L, Borofsky S, Kabakus IM, Law YM, Marko J, Shebel H, Mertan FV, Merino MJ, Wood BJ, Pinto PA, Summers RM, Choyke PL, Turkbey B (2017) Validation of the Dominant Sequence Paradigm and Role of Dynamic Contrast-enhanced Imaging in PI-RADS Version 2. Radiology 285:859–869

  80. 80.

    Muglia VF, Reis RB, Rocha TO, Silva AR, Noworolski S, Westphalen AC (2018) Hypoenhancing prostate cancers on dynamic contrast-enhanced MRI are associated with poor outcomes in high-risk patients: results of a hypothesis generating study. Abd Radiol 44:723–731

  81. 81.

    McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology 275:772–782

  82. 82.

    Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007). Gadolinium-based MR Contrast Agents and Nephrogenic Systemic Fibrosis. Radiology 242:647–649

  83. 83.

    Casciani E, Polettini E, Bertini L, Masselli G, Emiliozzi P, Amini M, Pansadoro V, Gualdi GF (2007) Contribution of the MR spectroscopic imaging in the diagnosis of prostate cancer in the peripheral zone. Abdom Imaging 32:796–802

  84. 84.

    Chen M, Dang HD, Wang JY, Zhou C, Li SY, Wang WC, Zhao WF, Yang ZH, Zhong CY, Li GZ (2008) Prostate cancer detection: comparison of t2-weighted imaging, diffusion-weighted imaging, proton magnetic resonance spectroscopic imaging, and the three techniques combined. Acta Radiol 49:602–610

  85. 85.

    Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, Khurana K, Ravizzini GC, Albert PS, Merino MJ, Choyke PL (2010) Prostate Cancer: Value of Multiparametric MR Imaging at 3 T for Detection–Histopathologifc Correlation. Radiology 255:89–9986

  86. 86.

    Leapman MS, Wang ZJ, Behr SC, Kurhanewicz J, Zagoria RJ, Carroll PR, et al. Impact of the integration of proton magnetic resonance imaging spectroscopy to PI-RADS 2 for prediction of high grade and high stage prostate cancer. Radiol Bras. 2017 Oct;50(5):299–307

  87. 87.

    Westphalen AC, Coakley FV, Qayyum A, Swanson M, Simko JP, Lu Y, Zhao S, Carroll PR, Yeh BM, Kurhanewicz J (2008) Peripheral Zone Prostate Cancer: Accuracy of Different Interpretative Approaches with MR and MR Spectroscopic Imaging. Radiology 246:177–184

  88. 88.

    Westphalen AC (2019). Lost in translation: lessons learned from the “demise” of MRSI of the prostate. Abd Radiol 44:3185–318789

  89. 89.

    Franklin KM, Dale BM, Merkle EM. Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using a radiofrequency cushion. J Magn Reson Imaging. 2008 Apr 17;27(6):1443–7.

  90. 90.

    Sreenivas M, Lowry M, Gibbs P, Pickles M, Turnbull LW (2007) A simple solution for reducing artefacts due to conductive and dielectric effects in clinical magnetic resonance imaging at 3T. Eur J Radiol 62:143–146

  91. 91.

    Mazaheri Y, Vargas HA, Nyman G, Akin O, Hricak H. Image artifacts on prostate diffusion-weighted magnetic resonance imaging: trade-offs at 1.5 Tesla and 3.0 Tesla (2013) Acad Radiol 20(8):1041–1047

  92. 92.

    Dietrich O, Reiser MF, Schoenberg S (2008) Artifacts in 3-T MRI: Physical background and reduction strategies. Eur J Radiol 65:29–35

  93. 93.

    Czarniecki M, Caglic I, Grist JT, Gill AB, Lorenc K, Slough RA, Priest AN, Barrett T (2018) Role of PROPELLER-DWI of the prostate in reducing distortion and artefact from total hip replacement metalwork. Eur J Radiol 102:213–219

  94. 94.

    Rosenkrantz AB, Taneja SS (2014) Radiologist, Be Aware: Ten Pitfalls That Confound the Interpretation of Multiparametric Prostate MRI. AJR 202(1):109–120

  95. 95.

    Zhuo J, Gullapalli RP (2006) MR Artifacts, Safety, and Quality Control. Radiographics 26(1):275–297

Download references

Author information

Correspondence to Antonio C. Westphalen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mussi, T.C., Baroni, R.H., Zagoria, R.J. et al. Prostate magnetic resonance imaging technique. Abdom Radiol (2019). https://doi.org/10.1007/s00261-019-02308-5

Download citation

Keywords

  • Prostate cancer
  • MRI
  • Technique