Advertisement

State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations

  • Joao Manoel Miranda Magalhaes Santos
  • Brunna Clemente Oliveira
  • Jose de Arimateia Batista Araujo-Filho
  • Antonildes N. Assuncao-Jr
  • Felipe Augusto de M. Machado
  • Camila Carlos Tavares Rocha
  • Joao Vicente Horvat
  • Marcos Roberto Menezes
  • Natally HorvatEmail author
Review
  • 5 Downloads

Abstract

Radiomics is a new field in medical imaging with the potential of changing medical practice. Radiomics is characterized by the extraction of several quantitative imaging features which are not visible to the naked eye from conventional imaging modalities, and its correlation with specific relevant clinical endpoints, such as pathology, therapeutic response, and survival. Several studies have evaluated the use of radiomics in patients with hepatocellular carcinoma (HCC) with encouraging results, particularly in the pretreatment prediction of tumor biological characteristics, risk of recurrence, and survival. In spite of this, there are limitations and challenges to be overcome before the implementation of radiomics into clinical routine. In this article, we will review the concepts of radiomics and their current potential applications in patients with HCC. It is important that the multidisciplinary team involved in the treatment of patients with HCC be aware of the basic principles, benefits, and limitations of radiomics in order to achieve a balanced interpretation of the results toward a personalized medicine.

Keywords

Hepatocellular carcinoma Radiomics Textural analysis Liver neoplasms Magnetic resonance imaging Computed tomography Positron emission tomography 

Notes

Acknowledgements

The authors would like to express their deepest gratitude to Dr. Richard Kinh Gian Do, MD, PhD radiologist at Memorial Sloan Kettering Cancer Center for his support on this manuscript.

Funding

No funding was received.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86.PubMedCrossRefGoogle Scholar
  2. 2.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108.PubMedCrossRefGoogle Scholar
  3. 3.
    Llovet JM, Bustamante J, Castells A, Vilana R, Ayuso MeC, Sala M, et al. Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology. 1999;29(1):62-7.PubMedCrossRefGoogle Scholar
  4. 4.
    Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013;47 Suppl:S2-6.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Venook AP, Papandreou C, Furuse J, de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist. 2010;15 Suppl 4:5-13.PubMedCrossRefGoogle Scholar
  6. 6.
    Cruite I, Tang A, Sirlin CB. Imaging-based diagnostic systems for hepatocellular carcinoma. AJR Am J Roentgenol. 2013;201(1):41-55.PubMedCrossRefGoogle Scholar
  7. 7.
    Horvat N, Monti S, Oliveira BC, Rocha CCT, Giancipoli RG, Mannelli L. State of the art in magnetic resonance imaging of hepatocellular carcinoma. Radiol Oncol. 2018;52(4):353-64.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Horvat N, Nikolovski I, Long N, Gerst S, Zheng J, Pak LM, et al. Imaging features of hepatocellular carcinoma compared to intrahepatic cholangiocarcinoma and combined tumor on MRI using liver imaging and data system (LI-RADS) version 2014. Abdom Radiol (NY). 2018;43(1):169-78.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016;278(2):563-77.PubMedGoogle Scholar
  10. 10.
    Horvat N, Bates DDB, Petkovska I. Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review. Abdom Radiol (NY). 2019.Google Scholar
  11. 11.
    Zheng BH, Liu LZ, Zhang ZZ, Shi JY, Dong LQ, Tian LY, et al. Radiomics score: a potential prognostic imaging feature for postoperative survival of solitary HCC patients. BMC Cancer. 2018;18(1):1148.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zhou Y, He L, Huang Y, Chen S, Wu P, Ye W, et al. CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma. Abdom Radiol (NY). 2017;42(6):1695-704.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhou W, Zhang L, Wang K, Chen S, Wang G, Liu Z, et al. Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging. 2017;45(5):1476-84.PubMedCrossRefGoogle Scholar
  14. 14.
    Wu M, Tan H, Gao F, Hai J, Ning P, Chen J, et al. Predicting the grade of hepatocellular carcinoma based on non-contrast-enhanced MRI radiomics signature. Eur Radiol. 2018.Google Scholar
  15. 15.
    Peng J, Zhang J, Zhang Q, Xu Y, Zhou J, Liu L. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma. Diagn Interv Radiol. 2018;24(3):121-7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Perrin T, Midya A, Yamashita R, Chakraborty J, Saidon T, Jarnagin WR, et al. Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol (NY). 2018;43(12):3271-8.PubMedCrossRefGoogle Scholar
  17. 17.
    Cai W, He B, Hu M, Zhang W, Xiao D, Yu H, et al. A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma. Surg Oncol. 2019;28:78-85.PubMedCrossRefGoogle Scholar
  18. 18.
    Zheng J, Chakraborty J, Chapman WC, Gerst S, Gonen M, Pak LM, et al. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma Using Quantitative Image Analysis. J Am Coll Surg. 2017;225(6):778-88.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chen S, Feng S, Wei J, Liu F, Li B, Li X, et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging. Eur Radiol. 2019.Google Scholar
  20. 20.
    Kim J, Choi SJ, Lee SH, Lee HY, Park H. Predicting Survival Using Pretreatment CT for Patients With Hepatocellular Carcinoma Treated With Transarterial Chemoembolization: Comparison of Models Using Radiomics. AJR Am J Roentgenol. 2018;211(5):1026-34.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim S, Shin J, Kim DY, Choi GH, Kim MJ, Choi JY. Radiomics on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging for Prediction of Postoperative Early and Late Recurrence of Single Hepatocellular Carcinoma. Clin Cancer Res. 2019.Google Scholar
  22. 22.
    Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019.Google Scholar
  23. 23.
    Bakr S, Echegaray S, Shah R, Kamaya A, Louie J, Napel S, et al. Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: a pilot study. J Med Imaging (Bellingham). 2017;4(4):041303.Google Scholar
  24. 24.
    Feng ST, Jia Y, Liao B, Huang B, Zhou Q, Li X, et al. Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI. Eur Radiol. 2019.Google Scholar
  25. 25.
    Kiryu S, Akai H, Nojima M, Hasegawa K, Shinkawa H, Kokudo N, et al. Impact of hepatocellular carcinoma heterogeneity on computed tomography as a prognostic indicator. Sci Rep. 2017;7(1):12689.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Akai H, Yasaka K, Kunimatsu A, Nojima M, Kokudo T, Kokudo N, et al. Predicting prognosis of resected hepatocellular carcinoma by radiomics analysis with random survival forest. Diagn Interv Imaging. 2018;99(10):643-51.PubMedCrossRefGoogle Scholar
  27. 27.
    Hui TCH, Chuah TK, Low HM, Tan CH. Predicting early recurrence of hepatocellular carcinoma with texture analysis of preoperative MRI: a radiomics study. Clin Radiol. 2018;73(12):1056.e11-.e16.PubMedCrossRefGoogle Scholar
  28. 28.
    Shan QY, Hu HT, Feng ST, Peng ZP, Chen SL, Zhou Q, et al. CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation. Cancer Imaging. 2019;19(1):11.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wu J, Liu A, Cui J, Chen A, Song Q, Xie L. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images. BMC Med Imaging. 2019;19(1):23.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Guo D, Gu D, Wang H, Wei J, Wang Z, Hao X, et al. Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation. Eur J Radiol. 2019;117:33-40.PubMedCrossRefGoogle Scholar
  31. 31.
    Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lubner MG, Smith AD, Sandrasegaran K, Sahani DV, Pickhardt PJ. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics: a review publication of the Radiological Society of North America, Inc. 2017;37(5):1483-503.PubMedCrossRefGoogle Scholar
  33. 33.
    Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, et al. Radiomics and radiogenomics in lung cancer: A review for the clinician. Lung cancer (Amsterdam, Netherlands). 2018;115:34-41.CrossRefGoogle Scholar
  34. 34.
    Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2(1):36.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Horvat N, Bates DDB, Petkovska IJAR. Novel imaging techniques of rectal cancer: what do radiomics and radiogenomics have to offer? A literature review. 2019.PubMedCrossRefGoogle Scholar
  36. 36.
    Bashir U, Siddique MM, McLean E, Goh V, Cook GJ. Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges. AJR American journal of roentgenology. 2016;207(3):534-43.PubMedCrossRefGoogle Scholar
  37. 37.
    Kolossváry M, Karády J, Szilveszter B, Kitslaar P, Hoffmann U, Merkely B, et al. Radiomic Features Are Superior to Conventional Quantitative Computed Tomographic Metrics to Identify Coronary Plaques With Napkin-Ring Sign. Circ Cardiovasc Imaging. 2017;10(12).Google Scholar
  38. 38.
    Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep. 2015;5:13087.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017;77(21):e104-e7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Parmar C, Grossmann P, Bussink J, Lambin P, Aerts H. Machine Learning methods for Quantitative Radiomic Biomarkers. Scientific reports. 2015;5:13087.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321-57.CrossRefGoogle Scholar
  42. 42.
    Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas HA, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci U S A. 2015;112(46):E6265-73.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lim KC, Chow PK, Allen JC, Chia GS, Lim M, Cheow PC, et al. Microvascular invasion is a better predictor of tumor recurrence and overall survival following surgical resection for hepatocellular carcinoma compared to the Milan criteria. Ann Surg. 2011;254(1):108-13.PubMedCrossRefGoogle Scholar
  44. 44.
    Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol. 2009;10(1):35-43.PubMedCrossRefGoogle Scholar
  45. 45.
    Imamura H, Matsuyama Y, Tanaka E, Ohkubo T, Hasegawa K, Miyagawa S, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003;38(2):200-7.PubMedCrossRefGoogle Scholar
  46. 46.
    Rodríguez-Perálvarez M, Luong TV, Andreana L, Meyer T, Dhillon AP, Burroughs AK. A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability. Ann Surg Oncol. 2013;20(1):325-39.PubMedCrossRefGoogle Scholar
  47. 47.
    Torzilli G, Makuuchi M, Inoue K, Takayama T, Sakamoto Y, Sugawara Y, et al. No-mortality liver resection for hepatocellular carcinoma in cirrhotic and noncirrhotic patients: is there a way? A prospective analysis of our approach. Arch Surg. 1999;134(9):984-92.PubMedCrossRefGoogle Scholar
  48. 48.
    Fan ST, Lo CM, Liu CL, Lam CM, Yuen WK, Yeung C, et al. Hepatectomy for hepatocellular carcinoma: toward zero hospital deaths. Ann Surg. 1999;229(3):322-30.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hasegawa K, Kokudo N, Imamura H, Matsuyama Y, Aoki T, Minagawa M, et al. Prognostic impact of anatomic resection for hepatocellular carcinoma. Ann Surg. 2005;242(2):252-9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Blanc-Durand P, Van Der Gucht A, Jreige M, Nicod-Lalonde M, Silva-Monteiro M, Prior JO, et al. Signature of survival: a. Oncotarget. 2018;9(4):4549-58.PubMedCrossRefGoogle Scholar
  51. 51.
    Park HJ, Kim JH, Choi SY, Lee ES, Park SJ, Byun JY, et al. Prediction of Therapeutic Response of Hepatocellular Carcinoma to Transcatheter Arterial Chemoembolization Based on Pretherapeutic Dynamic CT and Textural Findings. AJR Am J Roentgenol. 2017;209(4):W211-W20.PubMedCrossRefGoogle Scholar
  52. 52.
    El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492-502.PubMedCrossRefGoogle Scholar
  53. 53.
    Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81-8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Joao Manoel Miranda Magalhaes Santos
    • 1
  • Brunna Clemente Oliveira
    • 2
    • 3
  • Jose de Arimateia Batista Araujo-Filho
    • 2
  • Antonildes N. Assuncao-Jr
    • 4
  • Felipe Augusto de M. Machado
    • 5
  • Camila Carlos Tavares Rocha
    • 1
  • Joao Vicente Horvat
    • 1
    • 2
  • Marcos Roberto Menezes
    • 1
    • 2
  • Natally Horvat
    • 1
    • 2
    Email author
  1. 1.Department of RadiologyUniversity of São PauloSão PauloBrazil
  2. 2.Department of RadiologyHospital Sírio-LibanêsSão PauloBrazil
  3. 3.Department of RadiologyHospital SamaritanoSão PauloBrazil
  4. 4.Research and Education InstituteHospital Sírio-LibanêsSão PauloBrazil
  5. 5.Polytechnic SchoolUniversity of São PauloSão PauloBrazil

Personalised recommendations