Advertisement

Abdominal Radiology

, Volume 44, Issue 12, pp 3919–3934 | Cite as

What a difference a delay makes! CT urogram: a pictorial essay

  • Abraham Noorbakhsh
  • Lejla Aganovic
  • Noushin Vahdat
  • Soudabeh Fazeli
  • Romy Chung
  • Fiona CassidyEmail author
Special Section : Urothelial Disease

Abstract

Purpose

The aim of this pictorial essay is to demonstrate several cases where the diagnosis would have been difficult or impossible without the excretory phase image of CT urography.

Methods

A brief discussion of CT urography technique and dose reduction is followed by several cases illustrating the utility of CT urography.

Results

CT urography has become the primary imaging modality for evaluation of hematuria, as well as in the staging and surveillance of urinary tract malignancies. CT urography includes a non-contrast phase and contrast-enhanced nephrographic and excretory (delayed) phases. While the three phases add to the diagnostic ability of CT urography, it also adds potential patient radiation dose. Several techniques including automatic exposure control, iterative reconstruction algorithms, higher noise tolerance, and split-bolus have been successfully used to mitigate dose. The excretory phase is timed such that the excreted contrast opacifies the urinary collecting system and allows for greater detection of filling defects or other abnormalities. Sixteen cases illustrating the utility of excretory phase imaging are reviewed.

Conclusions

Excretory phase imaging of CT urography can be an essential tool for detecting and appropriately characterizing urinary tract malignancies, renal papillary and medullary abnormalities, CT radiolucent stones, congenital abnormalities, certain chronic inflammatory conditions, and perinephric collections.

Keywords

CT urography Pictorial essay Low-dose techniques 

Notes

Compliance with ethical standards

Disclosures

The authors have no disclosures to report.

References

  1. 1.
    Van Der Molen AJ, Cowan NC, Mueller-Lisse UG, et al. (2008) CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol 18:4–17.  https://doi.org/10.1007/s00330-007-0792-x CrossRefGoogle Scholar
  2. 2.
    Potenta SE, D’Agostino R, Sternberg KM, et al. (2015) CT Urography for Evaluation of the Ureter. RadioGraphics 35:709–726.  https://doi.org/10.1148/rg.2015140209 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shen L, Raman SS, Beland MD, et al (2015) ACR Appropriateness Criteria ® Hematuria. In: Am. Coll. Radiol. https://acsearch.acr.org/docs/69490/Narrative/. Accessed 6 Feb 2019
  4. 4.
    van der Pol CB, Sahni VA, Eberhardt SC, et al (2017) ACR Appropriateness Criteria ® Pretreatment Staging of Muscle-Invasive Bladder Cancer. In: Am. Coll. Radiol. https://acsearch.acr.org/docs/69370/Narrative/. Accessed 6 Feb 2019
  5. 5.
    Leyendecker JR, Clingan MJ, Eberhardt SC, et al (2014) ACR Appropriateness Criteria ® Post-Treatment Surveillance of Bladder Cancer. In: Am. Coll. Radiol. https://acsearch.acr.org/docs/69364/Narrative/. Accessed 6 Feb 2019
  6. 6.
    Moreno CC, Beland MD, Goldfarb S, et al (2015) ACR Appropriateness Criteria ® Acute Onset Flank Pain-Suspicion of Stone Disease. https://acsearch.acr.org/docs/69362/Narrative/. Accessed 27 Feb 2019
  7. 7.
    Silverman SG, Leyendecker JR, Amis ES (2009) What Is the Current Role of CT Urography and MR Urography in the Evaluation of the Urinary Tract? Radiology 250:309–323.  https://doi.org/10.1148/radiol.2502080534 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    ICRP (1991) 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 21:1–201CrossRefGoogle Scholar
  9. 9.
    Prakash P, Kalra MK, Kambadakone AK, et al. (2010) Reducing Abdominal CT Radiation Dose With Adaptive Statistical Iterative Reconstruction Technique. Invest Radiol 45:202–210.  https://doi.org/10.1097/RLI.ob013e3181dzfeec CrossRefPubMedGoogle Scholar
  10. 10.
    Sagara Y, Hara AK, Pavlicek W, et al. (2010) Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol 195:713–719.  https://doi.org/10.2214/AJR.09.2989 CrossRefPubMedGoogle Scholar
  11. 11.
    van der Molen AJ, Miclea RL, Geleijns J, Joemai RMS (2015) A Survey of Radiation Doses in CT Urography Before and After Implementation of Iterative Reconstruction. AJR Am J Roentgenol 205:572–577.  https://doi.org/10.2214/AJR.14.13862 CrossRefPubMedGoogle Scholar
  12. 12.
    McCollough CH, Bruesewitz MR, Kofler JM (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26:503–512.  https://doi.org/10.1148/rg.262055138 CrossRefPubMedGoogle Scholar
  13. 13.
    Hack K, Pinto PA, Gollub MJ (2012) Targeted Delayed Scanning at CT Urography: A Worthwhile Use of Radiation? Radiology 265:143–150.  https://doi.org/10.1148/radiol.12110548 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lisanti CJ, Toffoli TJ, Stringer MT, et al. (2014) CT Evaluation of the Upper Urinary Tract in Adults Younger Than 50 Years With Asymptomatic Microscopic Hematuria: Is IV Contrast Enhancement Needed? Am J Roentgenol 203:615–619.  https://doi.org/10.2214/AJR.13.11891 CrossRefGoogle Scholar
  15. 15.
    Lokken RP, Sadow CA, Silverman SG (2012) Diagnostic Yield of CT Urography in the Evaluation of Young Adults With Hematuria. Am J Roentgenol 198:609–615.  https://doi.org/10.2214/AJR.11.7296 CrossRefGoogle Scholar
  16. 16.
    Mace LR, Galloway TL, Ma A, et al. (2017) Diagnostic yield of CT urography in the evaluation of hematuria in young patients in a military population. Abdom Radiol 42:1906–1910.  https://doi.org/10.1007/s00261-017-1084-9 CrossRefGoogle Scholar
  17. 17.
    Dahlman P, van der Molen AJ, Magnusson M, Magnusson A (2012) How much dose can be saved in three-phase CT urography? A combination of normal-dose corticomedullary phase with low-dose unenhanced and excretory phases. AJR Am J Roentgenol 199:852–860.  https://doi.org/10.2214/AJR.11.7209 CrossRefPubMedGoogle Scholar
  18. 18.
    Yu L, Bruesewitz MR, Thomas KB, et al. (2011) Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implementations, and pitfalls. Radiographics 31:835–848.  https://doi.org/10.1148/rg.313105079 CrossRefPubMedGoogle Scholar
  19. 19.
    Lira D, Padole A, Kalra MK, Singh S (2015) Tube Potential and CT Radiation Dose Optimization. Am J Roentgenol 204:W4–W10.  https://doi.org/10.2214/AJR.14.13281 CrossRefGoogle Scholar
  20. 20.
    Yu L, Li H, Fletcher JG, McCollough CH (2010) Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 37:234–243.  https://doi.org/10.1118/1.3264614 CrossRefPubMedGoogle Scholar
  21. 21.
    Yanaga Y, Awai K, Funama Y, et al. (2009) Low-dose MDCT urography: feasibility study of low-tube-voltage technique and adaptive noise reduction filter. AJR Am J Roentgenol 193:W220–W229.  https://doi.org/10.2214/AJR.08.1710 CrossRefPubMedGoogle Scholar
  22. 22.
    Kaza RK, Platt JF, Cohan RH, et al. (2012) Dual-Energy CT with Single- and Dual-Source Scanners: Current Applications in Evaluating the Genitourinary Tract. RadioGraphics 32:353–369.  https://doi.org/10.1148/rg.322115065 CrossRefPubMedGoogle Scholar
  23. 23.
    Takahashi N, Vrtiska TJ, Kawashima A, et al. (2010) Detectability of Urinary Stones on Virtual Nonenhanced Images Generated at Pyelographic-Phase Dual-Energy CT. Radiology 256:184–190.  https://doi.org/10.1148/radiol.10091411 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen C-Y, Tsai T-H, Jaw T-S, et al. (2016) Diagnostic Performance of Split-Bolus Portal Venous Phase Dual-Energy CT Urography in Patients With Hematuria. Am J Roentgenol 206:1013–1022.  https://doi.org/10.2214/AJR.15.15112 CrossRefGoogle Scholar
  25. 25.
    Humphrey PA, Moch H, Cubilla AL, et al. (2016) The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours. Eur Urol 70:106–119.  https://doi.org/10.1016/j.eururo.2016.02.028 CrossRefGoogle Scholar
  26. 26.
    Rouprêt M, Babjuk M, Compérat E, et al. (2018) European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma: 2017 Update. Eur Urol 73:111–122.  https://doi.org/10.1016/j.eururo.2017.07.036 CrossRefPubMedGoogle Scholar
  27. 27.
    Cosentino M, Palou J, Gaya JM, et al. (2013) Upper urinary tract urothelial cell carcinoma: location as a predictive factor for concomitant bladder carcinoma. World J Urol 31:141–145.  https://doi.org/10.1007/s00345-012-0877-2 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Babjuk M, Böhle A, Burger M, et al. (2017) EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016. Eur Urol 71:447–461.  https://doi.org/10.1016/j.eururo.2016.05.041 CrossRefPubMedGoogle Scholar
  29. 29.
    Rouprêt M, Babjuk M, Compérat E, et al. (2015) European Association of Urology Guidelines on Upper Urinary Tract Urothelial Cell Carcinoma: 2015 Update. Eur Urol 68:868–879.  https://doi.org/10.1016/j.eururo.2015.06.044 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Holmäng S, Lele SM, Johansson SL (2007) Squamous cell carcinoma of the renal pelvis and ureter: incidence, symptoms, treatment and outcome. J Urol 178:51–56.  https://doi.org/10.1016/j.juro.2007.03.033 CrossRefPubMedGoogle Scholar
  31. 31.
    Chao CH, Fong TC, Hughes-Cassidy F, Aganovic L (2012) Ureteral Intussusception. J Comput Assist Tomogr 36:261–264.  https://doi.org/10.1097/RCT.0b013e31824677a5 CrossRefPubMedGoogle Scholar
  32. 32.
    Gambaro G, Feltrin GP, Lupo A, et al. (2006) Medullary sponge kidney (Lenarduzzi–Cacchi–Ricci disease): A Padua Medical School discovery in the 1930s. Kidney Int 69:663–670.  https://doi.org/10.1038/SJ.KI.5000035 CrossRefPubMedGoogle Scholar
  33. 33.
    Maw AM, Megibow AJ, Grasso M, Goldfarb DS (2007) Diagnosis of Medullary Sponge Kidney by Computed Tomographic Urography. Am J Kidney Dis 50:146–150.  https://doi.org/10.1053/J.AJKD.2007.03.020 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jung DC, Kim SH, Il Jung S, et al. (2006) Renal Papillary Necrosis: Review and Comparison of Findings at Multi-Detector Row CT and Intravenous Urography. RadioGraphics 26:1827–1836.  https://doi.org/10.1148/rg.266065039 CrossRefPubMedGoogle Scholar
  35. 35.
    Hartman MS (2006) The Golf Ball–on-Tee Sign. Radiology 239:297–298.  https://doi.org/10.1148/radiol.2391031947 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Alabousi A, Patlas MN, Menias CO, et al. (2017) Multi-modality imaging of the leaking ureter: why does detection of traumatic and iatrogenic ureteral injuries remain a challenge? Emerg Radiol 24:417–422.  https://doi.org/10.1007/s10140-017-1507-5 CrossRefPubMedGoogle Scholar
  37. 37.
    Gershman B, Kulkarni N, Sahani DV, Eisner BH (2011) Causes of renal forniceal rupture. BJU Int 108:1909–1911.  https://doi.org/10.1111/j.1464-410X.2011.10164.x CrossRefPubMedGoogle Scholar
  38. 38.
    Sandhu C, Anson K, Patel U (2003) Urinary Tract Stones—Part I: Role of Radiological Imaging in Diagnosis and Treatment Planning. Clin Radiol 58:415–421.  https://doi.org/10.1016/S0009-9260(03)00103-X CrossRefPubMedGoogle Scholar
  39. 39.
    Sundaram CP, Saltzman B (1999) Urolithiasis Associated with Protease Inhibitors. J Endourol 13:309–312CrossRefGoogle Scholar
  40. 40.
    Nadler RB, Rubenstein JN, Eggener SE, et al. (2003) The Etiology of Urolithiasis in HIV Infected Patients. J Urol 169:475–477.  https://doi.org/10.1016/S0022-5347(05)63936-5 CrossRefPubMedGoogle Scholar
  41. 41.
    Bani-Hani AH, Segura JW, Leroy AJ (2005) Urinary matrix calculi: our experience at a single institution. J Urol 173:120–123.  https://doi.org/10.1097/01.ju.0000145868.18824.25 CrossRefPubMedGoogle Scholar
  42. 42.
    Stoller ML, Gupta M, Bolton D, Irby PB (1994) Clinical Correlates of the Gross, Radiographic, and Histologic Features of Urinary Matrix Calculi. J Endourol 8:335–340.  https://doi.org/10.1089/end.1994.8.335 CrossRefPubMedGoogle Scholar
  43. 43.
    Coplen DE, Duckett JW (1995) The Modern Approach to Ureteroceles. J Urol 153:166–171.  https://doi.org/10.1097/00005392-199501000-00068 CrossRefPubMedGoogle Scholar
  44. 44.
    Dyer RB, Chen MY, Zagoria RJ (2004) Classic Signs in Uroradiology. RadioGraphics 24:S247–S280.  https://doi.org/10.1148/rg.24si045509 CrossRefPubMedGoogle Scholar
  45. 45.
    Chavhan GB (2002) The Cobra Head Sign. Radiology 225:781–782.  https://doi.org/10.1148/radiol.2253011206 CrossRefPubMedGoogle Scholar
  46. 46.
    Fernbach SK, Feinstein KA, Spencer K, Lindstrom CA (1997) Ureteral duplication and its complications. RadioGraphics 17:109–127.  https://doi.org/10.1148/radiographics.17.1.9017803 CrossRefPubMedGoogle Scholar
  47. 47.
    Didier RA, Chow JS, Kwatra NS, et al. (2017) The duplicated collecting system of the urinary tract: embryology, imaging appearances and clinical considerations. Pediatr Radiol 47:1526–1538.  https://doi.org/10.1007/s00247-017-3904-z CrossRefPubMedGoogle Scholar
  48. 48.
    Türkvatan A, Olçer T, Cumhur T (2009) Multidetector CT urography of renal fusion anomalies. Diagn Interv Radiol 15:127–134PubMedGoogle Scholar
  49. 49.
    Guarino N, Tadini B, Camardi P, et al (2004) The incidence of associated urological abnormalities in children with renal ectopia. J Urol 172:1757–9; discussion 1759CrossRefGoogle Scholar
  50. 50.
    Friedland GW, de Vries P (1975) Renal ectopia and fusion. Embryologic Basis. Urology 5:698–706CrossRefGoogle Scholar
  51. 51.
    Menéndez V, Sala X, Alvarez-Vijande R, et al. (1997) Cystic pyeloureteritis: Review of 34 cases. Radiologic aspects and differential diagnosis. Urology 50:31–37.  https://doi.org/10.1016/S0090-4295(97)00205-7 CrossRefPubMedGoogle Scholar
  52. 52.
    Wasserman NF, Zhang G, Posalaky IP, Reddy PK (1991) Ureteral pseudodiverticula: frequent association with uroepithelial malignancy. AJR Am J Roentgenol 157:69–72.  https://doi.org/10.2214/ajr.157.1.1904678 CrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of California, San Diego HealthSan DiegoUSA
  2. 2.Department of RadiologyVeterans Affairs San Diego HealthcareSan DiegoUSA

Personalised recommendations