Abdominal Radiology

, Volume 44, Issue 12, pp 3800–3810 | Cite as

Update on MR urography (MRU): technique and clinical applications

  • Jorge Abreu-Gomez
  • Amar Udare
  • Krishna P. Shanbhogue
  • Nicola SchiedaEmail author
Special Section : Urothelial Disease


Magnetic resonance imaging of the upper tract (pyelocalyces and ureters) or MR Urography (MRU) is technically possible and when performed correctly offers similar visualization of the upper tracts and for detection of non-calculous diseases of the collecting system similar specificity but with lower sensitivity compared to CTU. MRU provides the ability to simultaneously image the kidneys and urinary bladder with improved soft tissue resolution, better tissue characterization and when combined with assessment of the upper tract, a comprehensive examination of the urinary system. MRU requires meticulous attention to technical details and is a longer more demanding examination compared to CTU. Advances in MR imaging techniques including: parallel imaging, free-breathing motion compensation techniques and compressed sensing can dramatically shorten examination times and improve image quality and patient tolerance for the exam. This review article discusses updates in the MRU technique, summarizes clinical indications and opportunities for MRU in clinical practice and reviews advantages and disadvantages of MRU compared to CTU.


Magnetic resonance imaging Urography Urothelium 



  1. 1.
    Zeikus E, Sura G, Hindman N, Fielding JR (2018) Tumors of Renal Collecting Systems, Renal Pelvis, and Ureters. Magn Reson Imaging Clin N Am. 27(1):15–32Google Scholar
  2. 2.
    Leyendecker JR, Clingan MJ (2009) Magnetic Resonance Urography Update-Are We There Yet? Semin Ultrasound, CT MRI. 30(4):246–257Google Scholar
  3. 3.
    Silverman SG, Leyendecker JR, Amis ES (2009) What Is the Current Role of CT Urography and MR Urography in the Evaluation of the Urinary Tract? Radiology. 250(2):309–323PubMedGoogle Scholar
  4. 4.
    Potenta SE, D’Agostino R, Sternberg KM, Tatsumi K, Perusse K (2015) CT Urography for Evaluation of the Ureter. Radiographics. 35:709–726PubMedGoogle Scholar
  5. 5.
    Raman SP, Fishman EK (2018) Upper and Lower Tract Urothelial Imaging Using Computed Tomography Urography. Urol Clin North Am. 45(3):389–405PubMedGoogle Scholar
  6. 6.
    Jinzaki M, Kikuchi E, Akita H, et al. (2016) Role of computed tomography urography in the clinical evaluation of upper tract urothelial carcinoma. Int J Urol. 23(4):284–298PubMedGoogle Scholar
  7. 7.
    Razavi SA, Sadigh G, Kelly AM, Cronin P (2012) Comparative Effectiveness of Imaging Modalities for the Diagnosis of Upper and Lower Urinary Tract Malignancy: A Critically Appraised Topic. Acad Radiol. 19(9):1134–1140PubMedGoogle Scholar
  8. 8.
    Sudah M, Masarwah A, Kainulainen S, et al. (2016) Comprehensive MR urography protocol: Equally good diagnostic performance and enhanced visibility of the upper urinary tract compared to triple-phase CT urography. PLoS One. 11(7):1–12Google Scholar
  9. 9.
    Shanbhogue AK, Dilauro M, Schieda N, et al. (2016) MRI Evaluation of the Urothelial Tract: Pitfalls and Solutions. Am J Roentgenol. 207(6):W108–W116Google Scholar
  10. 10.
    Zand KR, Reinhold C, Haider MA, et al. (2007) Artifacts and pitfalls in MR imaging of the pelvis. J Magn Reson Imaging. 26(3):480–497PubMedGoogle Scholar
  11. 11.
    Hamilton J, Franson D, Seiberlich N (2017) Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc. 101:71–95PubMedPubMedCentralGoogle Scholar
  12. 12.
    Leyendecker JR, Barnes CE, Zagoria RJ (2008) MR Urography: Techniques and Clinical Applications. RadioGraphics. 28(1):23–46PubMedGoogle Scholar
  13. 13.
    Hoosein MM, Rajesh A (2014) MR imaging of the urinary bladder. Magn Reson Imaging Clin N Am. 22(2):129–134PubMedGoogle Scholar
  14. 14.
    Battal B (2015) Split-bolus MR urography: synchronous visualization of obstructing vessels and collecting system in children. Diagn Interv Radiol. 21:498–502PubMedPubMedCentralGoogle Scholar
  15. 15.
    Nolte-ernsting CCA, Adam GB, Günther RW (2001) MR urography : examination techniques and clinical applications. Eur Radiol. 11:355–372PubMedGoogle Scholar
  16. 16.
    Weadock WJ, Korobkin M, Ergen FB, et al. (2007) 3D excretory MR urography: Improved image quality with intravenous saline and diuretic administration. J Magn Reson Imaging. 25(4):783–789PubMedGoogle Scholar
  17. 17.
    Dym RJ, Chernyak V, Rozenblit AM (2013) MR imaging of renal collecting system with gadoxetate disodium: Feasibility for MR urography. J Magn Reson Imaging. 38(4):816–823PubMedGoogle Scholar
  18. 18.
    Moosavi B, Schieda N, Flood TA, McInnes MDF, Ramamurthy NK (2014) Multiparametric MRI of solid renal masses: pearls and pitfalls. Clin Radiol. 70(3):304–316PubMedGoogle Scholar
  19. 19.
    Leyendecker JR, Gianini JW (2009) Magnetic Resonance Urography. Abdom Imaging. 34:527–540PubMedGoogle Scholar
  20. 20.
    Bhargava P, Dighe MK, Lee JH, Wang C (2012) Multimodality Imaging of Ureteric Disease. Radiol Clin North Am. 50(2):271–299PubMedGoogle Scholar
  21. 21.
    Kim S, Jacob JS, Kim DC, et al. (2008) Time-resolved dynamic contrast-enhanced MR urography for the evaluation of ureteral peristalsis: Initial experience. J Magn Reson Imaging. 28(5):1293–1298PubMedGoogle Scholar
  22. 22.
    Yoshida S, Masuda H, Ishii C, et al. (2011) Usefulness of diffusion-weighted MRI in diagnosis of upper urinary tract cancer. Am J Roentgenol. 196(1):110–116Google Scholar
  23. 23.
    Pol CB Van Der, Chung A, Lim C, Gandhi N, Tu W, Mcinnes MDF, et al. Update on Multiparametric MRI of Urinary Bladder Cancer. J Magn Reson Imaging. 2018;1–15.Google Scholar
  24. 24.
    Panebianco V, Narumi Y, Altun E, et al. (2018) Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur Urol. 74(3):294–306PubMedPubMedCentralGoogle Scholar
  25. 25.
    Lassel EA, Rao R, Schwenke C, Schoenberg SO, Michaely HJ (2014) Diffusion-weighted imaging of focal renal lesions: A meta-analysis. Eur Radiol. 24(1):241–249PubMedGoogle Scholar
  26. 26.
    Charles-Edwards EM, De Souza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging. 6(1):135–143PubMedPubMedCentralGoogle Scholar
  27. 27.
    Maurer MH, Härmä KH, Thoeny H (2018) Diffusion-Weighted Genitourinary Imaging. Urol Clin North Am. 45(3):407–425PubMedGoogle Scholar
  28. 28.
    Qayyum A (2009) Diffusion-weighted Imaging in the Abdomen and Pelvis: Concepts and Applications. RadioGraphics. 29(6):1797–1810PubMedGoogle Scholar
  29. 29.
    Koh Dow-Mu, Collins David J. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. Am J Roentgenol. 2007;188(6):1622–35.Google Scholar
  30. 30.
    Fujii Y, Kihara K, Koga F, Masuda H, Yoshida S (2014) Role of diffusion-weighted magnetic resonance imaging as an imaging biomarker of urothelial carcinoma. Int J Urol. 21(12):1190–1200PubMedGoogle Scholar
  31. 31.
    Okaneya T, Nishizawa S, Kamigaito T, et al. (2010) Diffusion weighted imaging in the detection of upper urinary tract urothelial tumors. Int braz j urol. 36(1):18–28PubMedGoogle Scholar
  32. 32.
    Akita H, Jinzaki M, Kikuchi E, et al. (2011) Preoperative T categorization and prediction of histopathologic grading of urothelial carcinoma in renal pelvis using diffusion-weighted MRI. Am J Roentgenol. 197(5):1130–1136Google Scholar
  33. 33.
    Grant KB, Wood BJ, Agarwal HK, et al. (2014) Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom Imaging. 40(3):578–586Google Scholar
  34. 34.
    Rosenkrantz AB, Chandarana H, Hindman N, et al. (2013) Computed diffusion-weighted imaging of the prostate at 3 T: Impact on image quality and tumour detection. Eur Radiol. 23(11):3170–3177PubMedGoogle Scholar
  35. 35.
    Correa AF, Yankey H, Li T, et al. (2019) Renal Hilar Lesions: Biological Implications for Complex Partial Nephrectomy. Urology. 123:174–180PubMedGoogle Scholar
  36. 36.
    Choi K, McCafferty R, Deem S (2017) Contemporary management of upper tract urothelial cell carcinoma. World J Clin Urol. 6(1):1Google Scholar
  37. 37.
    Krishna S, Schieda N, Flood TA, et al. (2018) Magnetic resonance imaging (MRI) of the renal sinus. Abdom Radiol. 43(11):3082–3100Google Scholar
  38. 38.
    Wehrli NE, Kim MJ, Matza BW, et al. (2013) Utility of MRI features in differentiation of central renal cell carcinoma and renal pelvic urothelial carcinoma. Am J Roentgenol. 201(6):1260–1267Google Scholar
  39. 39.
    Schieda N, Davenport MS, Pedrosa I, et al. (2019) Renal and adrenal masses containing fat at MRI: Proposed nomenclature by the society of abdominal radiology disease-focused panel on renal cell carcinoma. J Magn Reson Imaging. 49(4):917–926PubMedGoogle Scholar
  40. 40.
    Schieda, N.; Krishna S, ; Davenport M. Update on Gadolinium-Based Contrast Agent-Enhanced Imaging in the Genitourinary System. Am J Roentgenol. 2019;11:1–11.Google Scholar
  41. 41.
    Flood TA, Shabana WM, Schieda N, et al. (2015) Diagnosis of Sarcomatoid Renal Cell Carcinoma With CT: Evaluation by Qualitative Imaging Features and Texture Analysis. Am J Roentgenol. 204(5):1013–1023Google Scholar
  42. 42.
    Zhang GMY, Sun H, Shi B, Jin ZY, Xue HD (2017) Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma. Abdom Radiol. 42(2):561–568Google Scholar
  43. 43.
    Mammen S, Krishna S, Quon M, et al. (2018) Diagnostic Accuracy of Qualitative and Quantitative Computed Tomography Analysis for Diagnosis of Pathological Grade and Stage in Upper Tract Urothelial Cell Carcinoma. J Comput Assist Tomogr. 42(2):204–210PubMedGoogle Scholar
  44. 44.
    Liu ZH, Shi JY, Wang HY, et al. (2018) CT texture analysis in bladder carcinoma: histologic grade characterization. Zhonghua Zhong Liu Za Zhi. 40(5):379–383PubMedGoogle Scholar
  45. 45.
    Lim CS, Tirumani S, van der Pol CB, et al. (2019) Use of Quantitative T2-Weighted and Apparent Diffusion Coefficient Texture Features of Bladder Cancer and Extravesical Fat for Local Tumor Staging After Transurethral Resection. AJR Am J Roentgenol. 12:1–10Google Scholar
  46. 46.
    Patino M, Fuentes JM, Singh S, Hahn PF, Sahani DV (2015) Iterative reconstruction techniques in abdominopelvic CT: Technical concepts and clinical implementation. Am J Roentgenol. 205(1):W19–W31Google Scholar
  47. 47.
    Padole A, Khawaja RDA, Kalra MK, Singh S (2015) CT radiation dose and iterative reconstruction techniques. Am J Roentgenol. 204(4):W384–W392Google Scholar
  48. 48.
    Wu D, Kim K, El Fakhri G, Li Q (2017) Iterative Low-Dose CT Reconstruction With Priors Trained by Artificial Neural Network. IEEE Trans Med Imaging. 36(12):2479–2486PubMedPubMedCentralGoogle Scholar
  49. 49.
    McCarthy CJ, Baliyan V, Kordbacheh H, Sajjad Z, Sahani D, Kambadakone A. Radiology of renal stone disease. Int J Surg. 2016;36(PD):638–46.PubMedGoogle Scholar
  50. 50.
    Kalb B, Sharma P, Salman K, et al. (2010) Acute abdominal pain: Is there a potential role for MRI in the setting of the emergency department in a patient with renal calculi? J Magn Reson Imaging. 32(5):1012–1023PubMedGoogle Scholar
  51. 51.
    Eisner BH, McQuaid JW, Hyams E, Matlaga BR (2011) Nephrolithiasis: What surgeons need to know. Am J Roentgenol. 196(6):1274–1278Google Scholar
  52. 52.
    Shokeir AA, El-Diasty T, Eassa W, Mosbah A, El-Ghar MA, Mansour O, et al. Diagnosis of ureteral obstruction in patients with compromised renal function: The role of noninvasive imaging modalities. J Urol. 2004;171(6 I):2303–6.PubMedGoogle Scholar
  53. 53.
    Hiorns MP (2011) Imaging of the urinary tract: The role of CT and MRI. Pediatr Nephrol. 26(1):59–68PubMedGoogle Scholar
  54. 54.
    Roy C, Labani A, Alemann G, et al. (2016) DWI in the Etiologic Diagnosis of Excretory Upper Urinary Tract Lesions: Can It help in Differentiating Benign From Malignant Tumors? A Retrospective Study of 98 Patients. Am J Roentgenol. 207(1):106–113Google Scholar
  55. 55.
    Oh SN, Choi Y-J, Lee JM, Jung SE, Byun JY, Rha SE, et al. The Renal Sinus: Pathologic Spectrum and Multimodality Imaging Approach. RadioGraphics. 2007;24(suppl_1):S117–31.Google Scholar
  56. 56.
    Vikram R, Sandler CM, Ng CS (2009) Imaging and staging of transitional cell carcinoma: part 2, upper urinary tract. AJR Am J Roentgenol. 192(6):1488–1493PubMedGoogle Scholar
  57. 57.
    Vikram R, Sandler CM, Ng CS (2009) Imaging and staging of transitional cell carcinoma: Part 1, lower urinary tract. Am J Roentgenol. 192(6):1481–1487Google Scholar
  58. 58.
    Lee CH, Tan CH, De Castro Faria S, Kundra V (2017) Role of imaging in the local staging of urothelial carcinoma of the bladder. Am J Roentgenol. 208(6):1193–1205Google Scholar
  59. 59.
    Mao Y, Kilcoyne A, Hedgire S, et al. (2016) Patterns of recurrence in upper tract transitional cell carcinoma: Imaging surveillance. Am J Roentgenol. 207(4):789–796Google Scholar
  60. 60.
    Duarte S, Figueiredo F, Cruz J, et al. (2018) Infectious and Inflammatory Diseases of the Urinary Tract. Magn Reson Imaging Clin N Am. 27(1):59–75PubMedGoogle Scholar
  61. 61.
    Cronin CG, Lohan DG, Blake MA, et al. (2008) Retroperitoneal Fibrosis: A Review of Clinical Features and Imaging Findings. Am J Roentgenol. 191(2):423–431Google Scholar
  62. 62.
    Cohan RH, Francis IR, Kaza RK, et al. (2011) Multimodality Imaging in Ureteric and Periureteric Pathologic Abnormalities. Am J Roentgenol. 197(6):W1083–W1092Google Scholar
  63. 63.
    Rajiah P, Sinha R, Cuevas C, et al. (2011) Imaging of Uncommon Retroperitoneal Masses. RadioGraphics. 31(4):949–976PubMedGoogle Scholar
  64. 64.
    Goenka AH, Shah SN, Remer EM (2012) Imaging of the Retroperitoneum. Radiol Clin North Am 50(2):333–355PubMedGoogle Scholar
  65. 65.
    Kamper L, Brandt AS, Scharwächter C, et al. (2011) MR evaluation of retroperitoneal fibrosis. RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgeb Verfahren. 183(8):721–726Google Scholar
  66. 66.
    Vaglio A, Salvarani C, Buzio C (2006) Retroperitoneal fibrosis. Lancet (London, England). 367(9506):241–251Google Scholar
  67. 67.
    Burn PR, Singh S, Barbar S, Boustead G, King CM (2002) Role of gadolinium-enhanced magnetic resonance imaging in retroperitoneal fibrosis. Can Assoc Radiol J. 53(3):168–170PubMedGoogle Scholar
  68. 68.
    Kamper L, Brandt AS, Ekamp H, et al. (2014) Diffusion-weighted MRI findings of treated and untreated retroperitoneal fibrosis. Diagn Interv Radiol. 20(6):459–463PubMedPubMedCentralGoogle Scholar
  69. 69.
    Katabathina VS, Khalil S, Shin S, et al. (2016) Immunoglobulin G4-Related Disease: Recent Advances in Pathogenesis and Imaging Findings. Radiol Clin North Am. 54(3):535–551PubMedGoogle Scholar
  70. 70.
    Hedgire SS, McDermott S, Borczuk D, et al. (2013) The spectrum of IgG4-related disease in the abdomen and pelvis. AJR Am J Roentgenol. 201(1):14–22PubMedGoogle Scholar
  71. 71.
    Tan TJ, Ng YL, Tan D, Fong WS, Low ASC (2014) Extrapancreatic findings of IgG4-related disease. Clin Radiol. 69:209–218PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Imaging, The Ottawa HospitalThe University of OttawaOttawaCanada
  2. 2.Department of RadiologyNYU Langone HealthNew YorkUSA
  3. 3.The Ottawa HospitalThe University of OttawaOttawaCanada

Personalised recommendations