Advertisement

Adrenocortical hyperplasia: a review of clinical presentation and imaging

  • Ajaykumar C. Morani
  • Corey T. JensenEmail author
  • Mouhammed Amir Habra
  • Michelle M. Agrons
  • Christine O. Menias
  • Nicolaus A. Wagner-Bartak
  • Akram M. Shaaban
  • Alicia M. Roman-Colon
  • Khaled M. Elsayes
Special Section: Adrenal Gland
  • 38 Downloads

Abstract

Adrenal hyperplasia is non-malignant enlargement of the adrenal glands, which is often bilateral. It can be incidental or related to indolent disease process and may be related to benign or malignant etiologies causing biochemical alterations in the hypothalamic–pituitary–adrenal axis which controls steroidogenesis and in particular cortisol production. Clinical significance of the adrenal hyperplasia is variable ranging from asymptomatic finding to serious manifestations of Cushing syndrome. This is often associated with anatomical changes in the adrenal glands, which typically manifests as diffuse and sometimes nodular enlargement of the adrenal glands radiologically. Approaching adrenal hyperplasia requires careful clinical and biochemical evaluation in correlation with imaging review to differentiate ACTH-dependent and ACTH-independent etiologies. CT is the primary modality of choice for adult adrenal imaging owing to reproducibility, temporal and spatial resolution and broader access, while MRI often serves a complimentary role. Ultrasound and MRI are most commonly used in pediatric cases to evaluate congenital adrenal hyperplasia. This article will discuss the clinical presentation and imaging features of different types and mimics of adrenal cortical hyperplasia.

Keywords

Adrenal hyperplasia Adrenal thickening Adrenal imaging Cushing syndrome 

Notes

Funding

Supported by institutional CCSG (cancer center support grant) from the NIH/National Cancer Institute under Award Number P30CA016672.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Goldman SM, et al., Computed Body Tomography with MRI Correlation. Vol. 1. 2006. Philadelphia, WA.Google Scholar
  2. 2.
    Breslow, M.J., Regulation of adrenal medullary and cortical blood flow. Am J Physiol, 1992. 262(5 Pt 2): p. H1317-30.Google Scholar
  3. 3.
    Sargar, K.M., G. Khanna, and R. Hulett Bowling, Imaging of Nonmalignant Adrenal Lesions in Children. Radiographics, 2017. 37(6): p. 1648-1664.Google Scholar
  4. 4.
    Vincent, J.M., et al., The size of normal adrenal glands on computed tomography. Clin Radiol, 1994. 49(7): p. 453-5.CrossRefGoogle Scholar
  5. 5.
    Li, L.L., et al., Incidental adrenal enlargement: an overview from a retrospective study in a chinese population. Int J Endocrinol, 2015. 2015: p. 192874.Google Scholar
  6. 6.
    Zeiger, M.A., et al., American Association of Clinical Endocrinologists and American Association of Endocrine Surgeons Medical Guidelines for the Management of Adrenal Incidentalomas: executive summary of recommendations. Endocr Pract, 2009. 15(5): p. 450-3.CrossRefGoogle Scholar
  7. 7.
    Kangarloo, H., et al., Sonography of adrenal glands in neonates and children: changes in appearance with age. J Clin Ultrasound, 1986. 14(1): p. 43-7.CrossRefGoogle Scholar
  8. 8.
    Tang, Y.Z., et al., The prevalence of incidentally detected adrenal enlargement on CT. Clin Radiol, 2014. 69(1): p. e37-42.CrossRefGoogle Scholar
  9. 9.
    Schteingart, D.E., The clinical spectrum of adrenocortical hyperplasia. Curr Opin Endocrinol Diabetes Obes, 2012. 19(3): p. 176-82.CrossRefGoogle Scholar
  10. 10.
    Michelle, M.A., et al., Adrenal cortical hyperplasia: diagnostic workup, subtypes, imaging features and mimics. Br J Radiol, 2017. 90(1079): p. 20170330.CrossRefGoogle Scholar
  11. 11.
    Teixeira, S.R., et al., The role of imaging in congenital adrenal hyperplasia. Arq Bras Endocrinol Metabol, 2014. 58(7): p. 701-8.CrossRefGoogle Scholar
  12. 12.
    Arnaldi, G., et al., Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab, 2003. 88(12): p. 5593-602.CrossRefGoogle Scholar
  13. 13.
    Nieman, L.K., et al., The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab, 2008. 93(5): p. 1526-40.CrossRefGoogle Scholar
  14. 14.
    Bansal, V., et al., Pitfalls in the diagnosis and management of Cushing’s syndrome. Neurosurg Focus, 2015. 38(2): p. E4.CrossRefGoogle Scholar
  15. 15.
    Newell-Price, J., et al., Optimal response criteria for the human CRH test in the differential diagnosis of ACTH-dependent Cushing’s syndrome. J Clin Endocrinol Metab, 2002. 87(4): p. 1640-5.Google Scholar
  16. 16.
    Wagner-Bartak, N.A., et al., Cushing Syndrome: Diagnostic Workup and Imaging Features, With Clinical and Pathologic Correlation. AJR Am J Roentgenol, 2017. 209(1): p. 19-32.CrossRefGoogle Scholar
  17. 17.
    Speiser, P.W., et al., Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab, 2010. 95(9): p. 4133-60.CrossRefGoogle Scholar
  18. 18.
    Kaye, C.I., et al., Newborn screening fact sheets. Pediatrics, 2006. 118(3): p. e934-63.CrossRefGoogle Scholar
  19. 19.
    Yeh, H.C., US and CT evaluation of diffusely enlarged adrenal gland. Crit Rev Diagn Imaging, 1992. 33(5): p. 437-60.Google Scholar
  20. 20.
    Elsayes K, C.E., Adrenal imaging: a practical guide to diagnostic workup and spectrum of imaging findings. Appl Radiol, 2011. 40: p. 14-19.Google Scholar
  21. 21.
    Sahdev, A., et al., Imaging in Cushing’s syndrome. Arq Bras Endocrinol Metabol, 2007. 51(8): p. 1319-28.CrossRefGoogle Scholar
  22. 22.
    Elsayes, K.M., et al., Practical Approach to Adrenal Imaging. Radiol Clin North Am, 2017. 55(2): p. 279-301.CrossRefGoogle Scholar
  23. 23.
    Kairys, N. and A. Schwell, Cushing Disease, in StatPearls. 2019: Treasure Island (FL).Google Scholar
  24. 24.
    Chaudhary, V. and S. Bano, Imaging of the pituitary: Recent advances. Indian J Endocrinol Metab, 2011. 15 Suppl 3: p. S216-23.CrossRefGoogle Scholar
  25. 25.
    Chung, E.M., et al., From the radiologic pathology archives: precocious puberty: radiologic-pathologic correlation. Radiographics, 2012. 32(7): p. 2071-99.CrossRefGoogle Scholar
  26. 26.
    Merke, D.P. and S.R. Bornstein, Congenital adrenal hyperplasia. Lancet, 2005. 365(9477): p. 2125-36.CrossRefGoogle Scholar
  27. 27.
    White, P.C. and P.W. Speiser, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev, 2000. 21(3): p. 245-91.Google Scholar
  28. 28.
    Stikkelbroeck, N.M., et al., High prevalence of testicular adrenal rest tumors, impaired spermatogenesis, and Leydig cell failure in adolescent and adult males with congenital adrenal hyperplasia. J Clin Endocrinol Metab, 2001. 86(12): p. 5721-8.CrossRefGoogle Scholar
  29. 29.
    Al-Alwan, I., et al., Clinical utility of adrenal ultrasonography in the diagnosis of congenital adrenal hyperplasia. J Pediatr, 1999. 135(1): p. 71-5.CrossRefGoogle Scholar
  30. 30.
    Avila, N.A., et al., Testicular adrenal rest tissue in congenital adrenal hyperplasia: findings at Gray-scale and color Doppler US. Radiology, 1996. 198(1): p. 99-104.CrossRefGoogle Scholar
  31. 31.
    Therrell, B.L., Jr., et al., Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics, 1998. 101(4 Pt 1): p. 583-90.Google Scholar
  32. 32.
    Miller, W.L., Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol, 2017. 165(Pt A): p. 18-37.CrossRefGoogle Scholar
  33. 33.
    Ayala-Ramirez, M., et al., Adrenocortical carcinoma: clinical outcomes and prognosis of 330 patients at a tertiary care center. Eur J Endocrinol, 2013. 169(6): p. 891-899.CrossRefGoogle Scholar
  34. 34.
    Newell-Price, J., et al., Cushing’s syndrome. Lancet, 2006. 367(9522): p. 1605-17.CrossRefGoogle Scholar
  35. 35.
    Courcoutsakis, N., P. Prassopoulos, and C.A. Stratakis, CT findings of primary pigmented nodular adrenocortical disease: rare cause of ACTH-independent Cushing syndrome. AJR Am J Roentgenol, 2010. 194(6): p. W541.CrossRefGoogle Scholar
  36. 36.
    Stratakis, C.A., Adrenocortical tumors, primary pigmented adrenocortical disease (PPNAD)/Carney complex, and other bilateral hyperplasias: the NIH studies. Horm Metab Res, 2007. 39(6): p. 467-73.CrossRefGoogle Scholar
  37. 37.
    Rockall, A.G., et al., CT and MR imaging of the adrenal glands in ACTH-independent cushing syndrome. Radiographics, 2004. 24(2): p. 435-52.CrossRefGoogle Scholar
  38. 38.
    Watson, T.D., S.J. Patel, and P.M. Nardi, Case 121: familial adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing syndrome. Radiology, 2007. 244(3): p. 923-6.CrossRefGoogle Scholar
  39. 39.
    Fortman, B.J., et al., Neurofibromatosis type 1: a diagnostic mimicker at CT. Radiographics, 2001. 21(3): p. 601-12.CrossRefGoogle Scholar
  40. 40.
    Gruber, L.M., et al., Pheochromocytoma and paraganglioma in patients with neurofibromatosis type 1. Clin Endocrinol (Oxf), 2017. 86(1): p. 141-149.CrossRefGoogle Scholar
  41. 41.
    Kobus, K., et al., Double NF1 inactivation affects adrenocortical function in NF1Prx1 mice and a human patient. PLoS One, 2015. 10(3): p. e0119030.CrossRefGoogle Scholar
  42. 42.
    Elsayes, K.M., et al., Lipomatous adrenal metaplasia: computed tomography findings in 2 presumed cases. J Comput Assist Tomogr, 2009. 33(5): p. 715-6.CrossRefGoogle Scholar
  43. 43.
    Kawashima, A., et al., Imaging of nontraumatic hemorrhage of the adrenal gland. Radiographics, 1999. 19(4): p. 949-63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ajaykumar C. Morani
    • 1
  • Corey T. Jensen
    • 1
    Email author
  • Mouhammed Amir Habra
    • 2
  • Michelle M. Agrons
    • 3
  • Christine O. Menias
    • 4
  • Nicolaus A. Wagner-Bartak
    • 1
  • Akram M. Shaaban
    • 5
  • Alicia M. Roman-Colon
    • 3
    • 6
  • Khaled M. Elsayes
    • 1
  1. 1.Department of Diagnostic RadiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Endocrine Neoplasia and Hormonal DisordersThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Diagnostic RadiologyBaylor College of MedicineHoustonUSA
  4. 4.Department of Diagnostic RadiologyMayo ClinicScottsdaleUSA
  5. 5.Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUSA
  6. 6.Department of RadiologyTexas Children’s HospitalHoustonUSA

Personalised recommendations