Abdominal Radiology

, Volume 44, Issue 8, pp 2769–2780 | Cite as

Assessment of liver fibrosis with gadoxetic acid-enhanced MRI: comparisons with transient elastography, ElastPQ, and serologic fibrosis markers

  • Hyeon Ji Jang
  • Ji Hye MinEmail author
  • Jeong Eun Lee
  • Kyung Sook Shin
  • Kyung-Hee Kim
  • Seo-Youn Choi



To compare the diagnostic performance of gadoxetic acid-enhanced magnetic resonance imaging (MRI), ultrasonography (US)—based elastography, and serologic fibrosis markers in assessing the stage of liver fibrosis.

Materials and methods

This retrospective study included 67 patients (55 male and 12 female; mean age 62.5 years) who underwent gadoxetic acid-enhanced MRI and liver stiffness measurements before liver biopsy or surgery between January 2014 and January 2018. Measurements were performed using transient elastography (TE), ultrasound shear wave elastography point quantification (ElastPQ), and blood tests. The following MRI-based fibrosis markers were assessed: contrast enhancement index (CEI), liver–spleen contrast ratio (LSC), liver–portal vein contrast ratio (LPC), and signal intensity ratio (SIR). The diagnostic performances of fibrosis markers were compared using the area under the receiver operating characteristic curve (AUC), with histopathologic fibrosis stage as the reference standard.


The fibrosis stages were F0–F1 (n = 17), F2 (n = 7), F3 (n = 20), and F4 (n = 23). MRI-based fibrosis markers negatively correlated with histologic stage: CEI (r = –0.786); LSC (r = − 0.718); LPC (r = − 0.448); and SIR (r = − 0.617; all P < 0.001). For diagnosis of either significant liver fibrosis (≥ F2) or cirrhosis (F4), the CEI provided better diagnostic accuracy (AUC = 0.898 and 0.881) than the aspartate aminotransferase-to-platelet ratio index (APRI) (AUC = 0.699 and 0.715; all P < 0.05). The CEI displayed similar diagnostic accuracy for ≥ F2 or F4 when using TE (AUC = 0.866 and 0.884, both P > 0.05) or ElastPQ [AUC = 0.751 (P = 0.021) and AUC = 0.786 (P = 0.234)].


The CEI measured by gadoxetic acid-enhanced MRI allows the staging of liver fibrosis, with a diagnostic accuracy comparable to that of TE and superior to that of ElastPQ or APRI.


Gadoxetic acid Magnetic resonance imaging Liver cirrhosis Fibrosis Elastography 



Magnetic resonance imaging


Transient elastography


Ultrasound shear wave elastography point quantification


Contrast enhancement index


Liver–spleen contrast ratio


Liver–portal vein contrast ratio


Signal intensity ratio


Area under the receiver operating characteristic curve


Aspartate aminotransferase-to-platelet ratio index




Magnetic resonance elastography


Aspartate aminotransferase


Standard deviation


Hepatobiliary phase


Picture archiving and communication system




Common bile duct


Signal intensity


Receiver operating characteristic



We declare no sources of financial support or funding received from any organization including National Institutes of Health (NIH); Wellcome Trust; Howard Hughes Medical Institute (HHMI).

Compliance with ethical standards

Conflict of interest

All author declares that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was waived for retrospective nature of clinical and imaging data collection in this study.

Supplementary material

261_2019_2041_MOESM1_ESM.tif (2.2 mb)
Supplementary material 1 (TIFF 2245 kb) Supplementary Figure 1. Receiver operating characteristic curves of MRI-based fibrosis markers for differentiating (a) significant liver fibrosis and (b) cirrhosis. Values were based on the liver stiffness measured with the contrast enhancement index (CEI), liver–spleen contrast ratio (LSC), liver–portal vein contrast ratio (LPC), and signal intensity ratio (SIR).
261_2019_2041_MOESM2_ESM.tif (2.4 mb)
Supplementary material 2 (TIFF 2409 kb)
261_2019_2041_MOESM3_ESM.docx (18 kb)
Supplementary material 3 (DOCX 18 kb)


  1. 1.
    Motosugi U, Ichikawa T, Oguri M, Sano K, Sou H, Muhi A, Matsuda M, Fujii H, Enomoto N, Araki T (2011) Staging liver fibrosis by using liver-enhancement ratio of gadoxetic acid-enhanced MR imaging: comparison with aspartate aminotransferase-to-platelet ratio index. Magn Reson Imaging 29:1047-1052. CrossRefGoogle Scholar
  2. 2.
    Yoshida H, Shiratori Y, Moriyama M, Arakawa Y, Ide T, Sata M, Inoue O, Yano M, Tanaka M, Fujiyama S, Nishiguchi S, Kuroki T, Imazeki F, Yokosuka O, Kinoyama S, Yamada G, Omata M (1999) Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy. Ann Intern Med 131:174-181CrossRefGoogle Scholar
  3. 3.
    Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT, Feng ZZ, Reddy KR, Schiff ER (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97:2614-2618. CrossRefGoogle Scholar
  4. 4.
    Bedossa P, Carrat F (2009) Liver biopsy: the best, not the gold standard. J Hepatol 50:1-3. CrossRefGoogle Scholar
  5. 5.
    Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD (2009) Liver biopsy. Hepatology 49:1017-1044. CrossRefGoogle Scholar
  6. 6.
    Horowitz JM, Venkatesh SK, Ehman RL, Jhaveri K, Kamath P, Ohliger MA, Samir AE, Silva AC, Taouli B, Torbenson MS, Wells ML, Yeh B, Miller FH (2017) Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel. Abdom Radiol (NY) 42:2037-2053. CrossRefGoogle Scholar
  7. 7.
    Singh S, Venkatesh SK, Wang Z, Miller FH, Motosugi U, Low RN, Hassanein T, Asbach P, Godfrey EM, Yin M, Chen J, Keaveny AP, Bridges M, Bohte A, Murad MH, Lomas DJ, Talwalkar JA, Ehman RL (2015) Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol 13:440-451.e446. CrossRefGoogle Scholar
  8. 8.
    Venkatesh SK, Yin M, Ehman RL (2013) Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 37:544-555. CrossRefGoogle Scholar
  9. 9.
    Venkatesh SK, Ehman RL (2015) Magnetic resonance elastography of abdomen. Abdom Imaging 40:745–759. CrossRefGoogle Scholar
  10. 10.
    Rockey DC, Bissell DM (2006) Noninvasive measures of liver fibrosis. Hepatology 43:S113–120. CrossRefGoogle Scholar
  11. 11.
    Kennedy P, Wagner M, Castera L, Hong CW, Johnson CL, Sirlin CB, Taouli B (2018) Quantitative Elastography Methods in Liver Disease: Current Evidence and Future Directions. Radiology 286:738-763. CrossRefGoogle Scholar
  12. 12.
    Asayama Y, Tajima T, Nishie A, Ishigami K, Kakihara D, Nakayama T, Okamoto D, Fujita N, Aishima S, Shirabe K, Honda H (2011) Uptake of Gd-EOB-DTPA by hepatocellular carcinoma: radiologic-pathologic correlation with special reference to bile production. Eur J Radiol 80:e243-248. CrossRefGoogle Scholar
  13. 13.
    Kobayashi S, Matsui O, Gabata T, Koda W, Minami T, Ryu Y, Kozaka K, Kitao A (2012) Relationship between signal intensity on hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MR imaging and prognosis of borderline lesions of hepatocellular carcinoma. Eur J Radiol 81:3002-3009. CrossRefGoogle Scholar
  14. 14.
    Akai H, Matsuda I, Kiryu S, Tajima T, Takao H, Watanabe Y, Imamura H, Kokudo N, Akahane M, Ohtomo K (2012) Fate of hypointense lesions on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Eur J Radiol 81:2973-2977. CrossRefGoogle Scholar
  15. 15.
    Verloh N, Haimerl M, Rennert J, Muller-Wille R, Niessen C, Kirchner G, Scherer MN, Schreyer AG, Stroszczynski C, Fellner C, Wiggermann P (2013) Impact of liver cirrhosis on liver enhancement at Gd-EOB-DTPA enhanced MRI at 3 Tesla. Eur J Radiol 82:1710-1715. CrossRefGoogle Scholar
  16. 16.
    Ryeom HK, Kim SH, Kim JY, Kim HJ, Lee JM, Chang YM, Kim YS, Kang DS (2004) Quantitative evaluation of liver function with MRI Using Gd-EOB-DTPA. Korean J Radiol 5:231-239. CrossRefGoogle Scholar
  17. 17.
    Tamada T, Ito K, Higaki A, Yoshida K, Kanki A, Sato T, Higashi H, Sone T (2011) Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 80:e311-316. CrossRefGoogle Scholar
  18. 18.
    Nishie A, Asayama Y, Ishigami K, Tajima T, Kakihara D, Nakayama T, Takayama Y, Okamoto D, Taketomi A, Shirabe K, Fujita N, Obara M, Yoshimitsu K, Honda H (2012) MR prediction of liver fibrosis using a liver-specific contrast agent: Superparamagnetic iron oxide versus Gd-EOB-DTPA. J Magn Reson Imaging 36:664-671. CrossRefGoogle Scholar
  19. 19.
    Tsuda N, Okada M, Murakami T (2010) New proposal for the staging of nonalcoholic steatohepatitis: evaluation of liver fibrosis on Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 73:137-142. CrossRefGoogle Scholar
  20. 20.
    Lee S, Choi D, Jeong WK (2016) Hepatic enhancement of Gd-EOB-DTPA-enhanced 3 Tesla MR imaging: Assessing severity of liver cirrhosis. J Magn Reson Imaging 44:1339-1345. CrossRefGoogle Scholar
  21. 21.
    Goshima S, Kanematsu M, Watanabe H, Kondo H, Kawada H, Moriyama N, Bae KT (2012) Gd-EOB-DTPA-enhanced MR imaging: prediction of hepatic fibrosis stages using liver contrast enhancement index and liver-to-spleen volumetric ratio. J Magn Reson Imaging 36:1148-1153. CrossRefGoogle Scholar
  22. 22.
    Zhang W, Wang X, Miao Y, Hu C, Zhao W (2018) Liver function correlates with liver-to-portal vein contrast ratio during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MR at 3 Tesla. Abdom Radiol (NY) 43:2262-2269. CrossRefGoogle Scholar
  23. 23.
    Noda Y, Goshima S, Kajita K, Kawada H, Kawai N, Koyasu H, Matsuo M, Bae KT (2016) Biliary tract enhancement in gadoxetic acid-enhanced MRI correlates with liver function biomarkers. Eur J Radiol 85:2001-2007. CrossRefGoogle Scholar
  24. 24.
    Lin ZH, Xin YN, Dong QJ, Wang Q, Jiang XJ, Zhan SH, Sun Y, Xuan SY (2011) Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology 53:726-736. CrossRefGoogle Scholar
  25. 25.
    Motosugi U, Ichikawa T, Sou H, Sano K, Tominaga L, Kitamura T, Araki T (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging 30:1042-1046. CrossRefGoogle Scholar
  26. 26.
    Bedossa P, Poynard T (1996) An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 24:289-293. Google Scholar
  27. 27.
    Group FMCS (1994) Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology 20:15-20CrossRefGoogle Scholar
  28. 28.
    Koo TK, Li MY (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 15:155-163. CrossRefGoogle Scholar
  29. 29.
    Verloh N, Utpatel K, Haimerl M, Zeman F, Fellner C, Fichtner-Feigl S, Teufel A, Stroszczynski C, Evert M, Wiggermann P (2015) Liver fibrosis and Gd-EOB-DTPA-enhanced MRI: A histopathologic correlation. Sci Rep 5:15408. CrossRefGoogle Scholar
  30. 30.
    Choi YR, Lee JM, Yoon JH, Han JK, Choi BI (2013) Comparison of magnetic resonance elastography and gadoxetate disodium-enhanced magnetic resonance imaging for the evaluation of hepatic fibrosis. Invest Radiol 48:607-613. CrossRefGoogle Scholar
  31. 31.
    Feier D, Balassy C, Bastati N, Stift J, Badea R, Ba-Ssalamah A (2013) Liver fibrosis: histopathologic and biochemical influences on diagnostic efficacy of hepatobiliary contrast-enhanced MR imaging in staging. Radiology 269:460-468. CrossRefGoogle Scholar
  32. 32.
    Noren B, Forsgren MF, Dahlqvist Leinhard O, Dahlstrom N, Kihlberg J, Romu T, Kechagias S, Almer S, Smedby O, Lundberg P (2013) Separation of advanced from mild hepatic fibrosis by quantification of the hepatobiliary uptake of Gd-EOB-DTPA. Eur Radiol 23:174-181. CrossRefGoogle Scholar
  33. 33.
    Pascolo L, Cupelli F, Anelli PL, Lorusso V, Visigalli M, Uggeri F, Tiribelli C (1999) Molecular mechanisms for the hepatic uptake of magnetic resonance imaging contrast agents. Biochem Biophys Res Commun 257:746-752. CrossRefGoogle Scholar
  34. 34.
    Tsuboyama T, Onishi H, Kim T, Akita H, Hori M, Tatsumi M, Nakamoto A, Nagano H, Matsuura N, Wakasa K, Tomoda K (2010) Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging--correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 255:824-833. CrossRefGoogle Scholar
  35. 35.
    Tsuda N, Matsui O (2010) Cirrhotic rat liver: reference to transporter activity and morphologic changes in bile canaliculi--gadoxetic acid-enhanced MR imaging. Radiology 256:767-773. CrossRefGoogle Scholar
  36. 36.
    van Montfoort JE, Stieger B, Meijer DK, Weinmann HJ, Meier PJ, Fattinger KE (1999) Hepatic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1. J Pharmacol Exp Ther 290:153-157Google Scholar
  37. 37.
    Weinmann HJ, Bauer H, Frenzel T, Muhler A, Ebert W (1996) Mechanism of hepatic uptake of gadoxetate disodium. Acad Radiol 3 Suppl 2:S232-234CrossRefGoogle Scholar
  38. 38.
    Lee NK, Kim S, Kim GH, Heo J, Seo HI, Kim TU, Kang DH (2012) Significance of the "delayed hyperintense portal vein sign" in the hepatobiliary phase MRI obtained with Gd-EOB-DTPA. J Magn Reson Imaging 36:678-685. CrossRefGoogle Scholar
  39. 39.
    Ni Y, Marchal G, Lukito G, Yu J, Muhler A, Baert AL (1994) MR imaging evaluation of liver enhancement by Gd-EOB-DTPA in selective and total bile duct obstruction in rats: correlation with serologic, microcholangiographic, and histologic findings. Radiology 190:753-758. CrossRefGoogle Scholar
  40. 40.
    Kim T, Murakami T, Hasuike Y, Gotoh M, Kato N, Takahashi M, Miyazawa T, Narumi Y, Monden M, Nakamura H (1997) Experimental hepatic dysfunction: evaluation by MRI with Gd-EOB-DTPA. J Magn Reson Imaging 7:683-688CrossRefGoogle Scholar
  41. 41.
    Watanabe H, Kanematsu M, Goshima S, Kondo H, Onozuka M, Moriyama N, Bae KT (2011) Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging--preliminary observations. Radiology 259:142-150. CrossRefGoogle Scholar
  42. 42.
    Takatsu Y, Kobayashi S, Miyati T, Shiozaki T (2016) A novel method for evaluating enhancement using gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid in the hepatobiliary phase of magnetic resonance imaging. Clin Imaging 40:1112-1117. CrossRefGoogle Scholar
  43. 43.
    Dahlqvist Leinhard O, Dahlstrom N, Kihlberg J, Sandstrom P, Brismar TB, Smedby O, Lundberg P (2012) Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study. Eur Radiol 22:642-653. CrossRefGoogle Scholar
  44. 44.
    Esterson YB, Flusberg M, Oh S, Mazzariol F, Rozenblit AM, Chernyak V (2015) Improved parenchymal liver enhancement with extended delay on Gd-EOB-DTPA-enhanced MRI in patients with parenchymal liver disease: associated clinical and imaging factors. Clin Radiol 70:723-729. CrossRefGoogle Scholar
  45. 45.
    Lu Q, Lu C, Li J, Ling W, Qi X, He D, Liu J, Wen T, Wu H, Zhu H, Luo Y (2016) Stiffness Value and Serum Biomarkers in Liver Fibrosis Staging: Study in Large Surgical Specimens in Patients with Chronic Hepatitis B. Radiology 280:290-299. CrossRefGoogle Scholar
  46. 46.
    Shaheen AA, Myers RP (2007) Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis C-related fibrosis: a systematic review. Hepatology 46:912-921. CrossRefGoogle Scholar
  47. 47.
    Yilmaz Y, Yonal O, Kurt R, Bayrak M, Aktas B, Ozdogan O (2011) Noninvasive assessment of liver fibrosis with the aspartate transaminase to platelet ratio index (APRI): Usefulness in patients with chronic liver disease: APRI in chronic liver disease. Hepat Mon 11:103-106Google Scholar
  48. 48.
    Barr RG, Ferraioli G, Palmeri ML, Goodman ZD, Garcia-Tsao G, Rubin J, Garra B, Myers RP, Wilson SR, Rubens D, Levine D (2015) Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 276:845-861. CrossRefGoogle Scholar
  49. 49.
    Friedrich-Rust M, Ong MF, Martens S, Sarrazin C, Bojunga J, Zeuzem S, Herrmann E (2008) Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 134:960-974. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hyeon Ji Jang
    • 1
  • Ji Hye Min
    • 2
    Email author
  • Jeong Eun Lee
    • 1
  • Kyung Sook Shin
    • 1
  • Kyung-Hee Kim
    • 3
  • Seo-Youn Choi
    • 4
  1. 1.Department of Radiology, Chungnam National University HospitalChungnam National University College of MedicineDaejeonRepublic of Korea
  2. 2.Department of Radiology and Center for Imaging Science, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
  3. 3.Department of Pathology, Chungnam National University HospitalChungnam National University College of MedicineDaejeonRepublic of Korea
  4. 4.Department of Radiology, Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea

Personalised recommendations