The role of multimodal imaging in guiding resectability and cytoreduction in pancreatic neuroendocrine tumors: focus on PET and MRI

  • Laura Rozenblum
  • Fatima-Zohra Mokrane
  • Randy Yeh
  • Mathieu Sinigaglia
  • Florent Besson
  • Romain-David Seban
  • Cecile N Chougnet
  • Paul Revel-Mouroz
  • Binsheng Zhao
  • Philippe Otal
  • Lawrence H. Schwartz
  • Laurent DercleEmail author


Pancreatic neuroendocrine tumors (pNETs) are rare neoplasms that secrete peptides and neuro-amines. pNETs can be sporadic or hereditary, syndromic or non-syndromic with different clinical presentations and prognoses. The role of medical imaging includes locating the tumor, assessing its extent, and evaluating the feasibility of curative surgery or cytoreduction. Pancreatic NETs have very distinctive phenotypes on CT, MRI, and PET. PET have been demonstrated to be very sensitive to detect either well-differentiated pNETs using 68Gallium somatostatin receptor (SSTR) radiotracers, or more aggressive undifferentiated pNETS using 18F-FDG. A comprehensive interpretation of multimodal imaging guides resectability and cytoreduction in pNETs. The imaging phenotype provides information on the differentiation and proliferation of pNETs, as well as the spatial and temporal heterogeneity of tumors with prognostic and therapeutic implications. This review provides a structured approach for standardized reading and reporting of medical imaging studies with a focus on PET and MR techniques. It explains which imaging approach should be used for different subtypes of pNET and what a radiologist should be looking for and reporting when interpreting these studies.


Neuroendocrine tumors PET-CT Theranostics Somatostatin receptors 



Apparent diffusion coefficient


American Joint Committee on Cancer


Amine precursor uptake and decarboxylation


Contrast-enhanced ultra sound examination


Computed tomography




DOTA0-Phe1-Tyr3 octreotide


Diffusion-weighted imaging


European Neuroendocrine Tumor Society


Endoscopic ultrasound examination






Technetium 99m


Glucagon-like peptide 1


Intra-arterial injection of calcium


Intraoperative ultrasound examination


Liver metastases


Multiple endocrine neoplasia syndrome


Magnetic resonance imaging


North American Neuroendocrine Tumor Society




Neuroendocrine tumors


Overall survival


Pancreatic ductal adenocarcinoma


Pancreatic tumor


Somatostatin receptor


Somatostatin receptor PET

SSTR scintigraphy

Somatostatin receptor scintigraphy


Standard uptake value


Tuberous sclerosis complex


Ultrasound examination


Von Hippel–Lindau syndrome


World Health Organization



L Dercle’s work was funded by a grant from Fondation Philanthropia, Geneva, Switzerland, and the Fondation Nuovo-Soldati.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Canellas R, Lo G, Bhowmik S, Ferrone C, Sahani D (2018) Pancreatic neuroendocrine tumor: Correlations between MRI features, tumor biology, and clinical outcome after surgery. J Magn Reson Imaging 47 (2):425-432. CrossRefPubMedGoogle Scholar
  2. 2.
    Smith JK, Ng SC, Hill JS, Simons JP, Arous EJ, Shah SA, Tseng JF, McDade TP (2010) Complications after pancreatectomy for neuroendocrine tumors: a national study. J Surg Res 163 (1):63-68. CrossRefPubMedGoogle Scholar
  3. 3.
    Falconi M, Eriksson B, Kaltsas G, Bartsch DK, Capdevila J, Caplin M, Kos-Kudla B, Kwekkeboom D, Rindi G, Klöppel G, Reed N, Kianmanesh R, Jensen RT, Participants aoVCC (2016) ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 103 (2):153-171. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vagefi PA, Razo O, Deshpande V, McGrath DJ, Lauwers GY, Thayer SP, Warshaw AL, Fernández-del Castillo C (2007) Evolving patterns in the detection and outcomes of pancreatic neuroendocrine neoplasms: the Massachusetts General Hospital experience from 1977 to 2005. Archives of Surgery 142 (4):347-354CrossRefPubMedGoogle Scholar
  5. 5.
    Ellison TA, Wolfgang CL, Shi C, Cameron JL, Murakami P, Mun LJ, Singhi AD, Cornish TC, Olino K, Meriden Z, Choti M, Diaz LA, Pawlik TM, Schulick RD, Hruban RH, Edil BH (2014) A single institution’s 26-year experience with nonfunctional pancreatic neuroendocrine tumors: a validation of current staging systems and a new prognostic nomogram. Ann Surg 259 (2):204-212. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA Cancer J Clin 67 (1):7-30. CrossRefPubMedGoogle Scholar
  7. 7.
    Halfdanarson TR, Rabe KG, Rubin J, Petersen GM (2008) Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol 19 (10):1727-1733. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ambe CM, Nguyen P, Centeno BA, Choi J, Strosberg J, Kvols L, Hodul P, Hoffe S, Malafa MP (2017) Multimodality Management of “Borderline Resectable” Pancreatic Neuroendocrine Tumors: Report of a Single-Institution Experience. Cancer Control 24 (5):1073274817729076. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van Essen M, Sundin A, Krenning EP, Kwekkeboom DJ (2014) Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol 10 (2):102-114. CrossRefPubMedGoogle Scholar
  10. 10.
    Halfdanarson TR, Rabe KG, Rubin J, Petersen GM (2008) Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Annals of Oncology 19 (10):1727-1733. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bozkurt MF, Virgolini I, Balogova S, Beheshti M, Rubello D, Decristoforo C, Ambrosini V, Kjaer A, Delgado-Bolton R, Kunikowska J, Oyen WJG, Chiti A, Giammarile F, Fanti S (2017) Guideline for PET/CT imaging of neuroendocrine neoplasms with (68)Ga-DOTA-conjugated somatostatin receptor targeting peptides and (18)F-DOPA. Eur J Nucl Med Mol Imaging 44 (9):1588-1601. CrossRefPubMedGoogle Scholar
  12. 12.
    Gouya H, Vignaux O, Augui J, Dousset B, Palazzo L, Louvel A, Chaussade S, Legmann P (2003) CT, Endoscopic Sonography, and a Combined Protocol for Preoperative Evaluation of Pancreatic Insulinomas. American Journal of Roentgenology 181 (4):987-992. CrossRefPubMedGoogle Scholar
  13. 13.
    Berends FJ, Cuesta MA, Kazemier G, van Eijck CH, de Herder WW, van Muiswinkel JM, Bruining HA, Bonjer HJ (2000) Laparoscopic detection and resection of insulinomas. Surgery 128 (3):386-391. CrossRefPubMedGoogle Scholar
  14. 14.
    Klöppel G, Klimstra DS, Hruban RH, Adsay V, Capella C, Couvelard A, Komminoth P, La Rosa S, Ohike N, Osamura RY, Perren A, Scoazec J-Y, Rindi G (2017) Pancreatic Neuroendocrine Tumors: Update on the New World Health Organization Classification. AJSP: Reviews & Reports 22 (5)Google Scholar
  15. 15.
    Tang LH, Basturk O, Sue JJ, Klimstra DS (2016) A Practical Approach to the Classification of WHO Grade 3 (G3) Well Differentiated Neuroendocrine Tumor (WD-NET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. The American journal of surgical pathology 40 (9):1192-1202. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dasari A, Shen C, Halperin D, et al. (2017) Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the united states. JAMA Oncol 3 (10):1335-1342. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sho S, Court CM, Winograd P, Toste PA, Pisegna JR, Lewis M, Donahue TR, Hines OJ, Reber HA, Dawson DW, Tomlinson JS (2018) A Prognostic Scoring System for the Prediction of Metastatic Recurrence Following Curative Resection of Pancreatic Neuroendocrine Tumors. J Gastrointest Surg.
  18. 18.
    Jensen RT, Cadiot G, Brandi ML, de Herder WW, Kaltsas G, Komminoth P, Scoazec J-Y, Salazar R, Sauvanet A, Kianmanesh R (2012) ENETS Consensus Guidelines for the Management of Patients with Digestive Neuroendocrine Neoplasms: Functional Pancreatic Endocrine Tumor Syndromes. Neuroendocrinology 95 (2):98-119. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sadowski SM, Neychev V, Millo C, Shih J, Nilubol N, Herscovitch P, Pacak K, Marx SJ, Kebebew E (2016) Prospective Study of 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography for Detecting Gastro-Entero-Pancreatic Neuroendocrine Tumors and Unknown Primary Sites. J Clin Oncol 34 (6):588-596. CrossRefPubMedGoogle Scholar
  20. 20.
    Buchmann I, Henze M, Engelbrecht S, Eisenhut M, Runz A, Schafer M, Schilling T, Haufe S, Herrmann T, Haberkorn U (2007) Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 34 (10):1617-1626. CrossRefPubMedGoogle Scholar
  21. 21.
    Oberndorfer S (1907) Karzinoide tumoren des dunndarms. Frankfurt Z Path 1:426-432Google Scholar
  22. 22.
    Öberg KE (2010) Gastrointestinal neuroendocrine tumors. Annals of Oncology 21 (suppl_7):vii72-vii80Google Scholar
  23. 23.
    Triponez F, Dosseh D, Goudet P, Cougard P, Bauters C, Murat A, Cadiot G, Niccoli-Sire P, Chayvialle JA, Calender A, Proye CA (2006) Epidemiology data on 108 MEN 1 patients from the GTE with isolated nonfunctioning tumors of the pancreas. Ann Surg 243 (2):265-272. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Corrias G, Monti S, Horvat N, Tang L, Basturk O, Saba L, Mannelli L (2018) Imaging features of malignant abdominal neuroendocrine tumors with rare presentation. Clin Imaging 51:59-64. CrossRefPubMedGoogle Scholar
  25. 25.
    Owen N, Sohaib S, Peppercorn P, Monson J, Grossman A, Besser G, Reznek R (2001) MRI of pancreatic neuroendocrine tumours. The British journal of radiology 74 (886):968-973CrossRefPubMedGoogle Scholar
  26. 26.
    Kim JH, Eun HW, Kim YJ, Han JK, Choi BI (2013) Staging accuracy of MR for pancreatic neuroendocrine tumor and imaging findings according to the tumor grade. Abdominal imaging 38 (5):1106-1114CrossRefPubMedGoogle Scholar
  27. 27.
    Metz DC, Jensen RT (2008) Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 135 (5):1469-1492CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Guo J, Zhao J, Bi X, Li Z, Huang Z, Zhang Y, Cai J, Zhao H (2017) Should surgery be conducted for small nonfunctioning pancreatic neuroendocrine tumors: a systematic review. Oncotarget 8 (21):35368-35375. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Raman SP, Hruban RH, Cameron JL, Wolfgang CL, Fishman EK (2012) Pancreatic imaging mimics: part 2, pancreatic neuroendocrine tumors and their mimics. AJR Am J Roentgenol 199 (2):309-318. CrossRefPubMedGoogle Scholar
  30. 30.
    Foster DS, Jensen R, Norton JA (2018) Management of liver neuroendocrine tumors in 2018. JAMA Oncol.
  31. 31.
    Ito T, Igarashi H, Uehara H, Berna MJ, Jensen RT (2013) Causes of death and prognostic factors in multiple endocrine neoplasia type 1: a prospective study: comparison of 106 MEN1/Zollinger-Ellison syndrome patients with 1613 literature MEN1 patients with or without pancreatic endocrine tumors. Medicine (Baltimore) 92 (3):135-181. CrossRefGoogle Scholar
  32. 32.
    Reznek RH (2006) CT/MRI of neuroendocrine tumours. Cancer Imaging 6 (Spec No A):S163-S177.
  33. 33.
    Lipinski M, Rydzewska G, Foltyn W, Andrysiak-Mamos E, Baldys-Waligorska A, Bednarczuk T, Blicharz-Dorniak J, Bolanowski M, Boratyn-Nowicka A, Borowska M, Cichocki A, Cwikla JB, Falconi M, Handkiewicz-Junak D, Hubalewska-Dydejczyk A, Jarzab B, Junik R, Kajdaniuk D, Kaminski G, Kolasinska-Cwikla A, Kowalska A, Krol R, Krolicki L, Kunikowska J, Kusnierz K, Lampe P, Lange D, Lewczuk-Myslicka A, Lewinski A, Londzin-Olesik M, Marek B, Nasierowska-Guttmejer A, Nowakowska-Dulawa E, Pilch-Kowalczyk J, Poczkaj K, Rosiek V, Ruchala M, Sieminska L, Sowa-Staszczak A, Starzynska T, Steinhof-Radwanska K, Strzelczyk J, Sworczak K, Syrenicz A, Szawlowski A, Szczepkowski M, Wachula E, Zajecki W, Zemczak A, Zgliczynski W, Kos-Kudla B (2017) Gastroduodenal neuroendocrine neoplasms, including gastrinoma - management guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol 68 (2):138-153. CrossRefPubMedGoogle Scholar
  34. 34.
    O’Toole D, Salazar R, Falconi M, Kaltsas G, Couvelard A, de Herder WW, Hyrdel R, Nikou G, Krenning E, Vullierme M-P (2006) Rare functioning pancreatic endocrine tumors. Neuroendocrinology 84 (3):189-195CrossRefPubMedGoogle Scholar
  35. 35.
    Lo GC, Kambadakone A (2018) MR Imaging of Pancreatic Neuroendocrine Tumors. Magn Reson Imaging Clin N Am 26 (3):391-403. CrossRefPubMedGoogle Scholar
  36. 36.
    Lee NJ, Hruban RH, Fishman EK (2018) Pancreatic neuroendocrine tumor: review of heterogeneous spectrum of CT appearance. Abdom Radiol (NY) 43 (11):3025-3034. CrossRefGoogle Scholar
  37. 37.
    Bushnell DL, Baum RP (2011) Standard imaging techniques for neuroendocrine tumors. Endocrinol Metab Clin North Am 40 (1):153-162, ix.
  38. 38.
    Sundin A, Garske U, Örlefors H Nuclear imaging of neuroendocrine tumours. Best Practice & Research Clinical Endocrinology & Metabolism 21 (1):69-85.
  39. 39.
    Sun H, Zhou J, Liu K, Shen T, Wang X, Wang X (2018) Pancreatic neuroendocrine tumors: MR imaging features preoperatively predict lymph node metastasis. Abdom Radiol (NY).
  40. 40.
    Dromain C, Deandreis D, Scoazec JY, Goere D, Ducreux M, Baudin E, Tselikas L (2016) Imaging of neuroendocrine tumors of the pancreas. Diagn Interv Imaging 97 (12):1241-1257. CrossRefPubMedGoogle Scholar
  41. 41.
    Boninsegna L, Partelli S, D’Innocenzio MM, Capelli P, Scarpa A, Bassi C, Pederzoli P, Falconi M (2010) Pancreatic cystic endocrine tumors: a different morphological entity associated with a less aggressive behavior. Neuroendocrinology 92 (4):246-251. CrossRefPubMedGoogle Scholar
  42. 42.
    Singhi AD, Chu LC, Tatsas AD, Shi C, Ellison TA, Fishman EK, Kawamoto S, Schulick RD, Wolfgang CL, Hruban RH, Edil BH (2012) Cystic Pancreatic Neuroendocrine Tumors: A Clinicopathologic Study. The American Journal of Surgical Pathology 36 (11):1666-1673. CrossRefPubMedGoogle Scholar
  43. 43.
    De Robertis R, Maris B, Cardobi N, Tinazzi Martini P, Gobbo S, Capelli P, Ortolani S, Cingarlini S, Paiella S, Landoni L, Butturini G, Regi P, Scarpa A, Tortora G, D’Onofrio M (2018) Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors? Eur Radiol.
  44. 44.
    Buetow PC, Buck JL, Pantongrag-Brown L, Beck KG, Ros PR, Adair CF (1996) Solid and papillary epithelial neoplasm of the pancreas: imaging-pathologic correlation on 56 cases. Radiology 199 (3):707-711CrossRefPubMedGoogle Scholar
  45. 45.
    Semelka RC, Ascher SM (1993) MR imaging of the pancreas. Radiology 188 (3):593-602CrossRefPubMedGoogle Scholar
  46. 46.
    Sureka B, Meena V, Khera PS (2018) Differential diagnosis of pancreatic calcifications. American Journal of Roentgenology 210 (1):W43-W43CrossRefPubMedGoogle Scholar
  47. 47.
    Javadi S, Menias CO, Korivi BR, Shaaban AM, Patnana M, Alhalabi K, Elsayes KM (2017) Pancreatic calcifications and calcified pancreatic masses: pattern recognition approach on CT. American Journal of Roentgenology 209 (1):77-87CrossRefPubMedGoogle Scholar
  48. 48.
    Singh R, Calhoun S, Shin M, Katz R (2008) Pancreatic Neuroendocrine Tumor with Atypical Radiologic Presentation. Radiol Case Rep 3 (3):162. CrossRefPubMedGoogle Scholar
  49. 49.
    Cescato R, Schulz S, Waser B, Eltschinger V, Rivier JE, Wester HJ, Culler M, Ginj M, Liu Q, Schonbrunn A, Reubi JC (2006) Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. J Nucl Med 47 (3):502-511PubMedGoogle Scholar
  50. 50.
    Graham MM, Gu X, Ginader T, Breheny P, Sunderland JJ (2017) (68)Ga-DOTATOC Imaging of Neuroendocrine Tumors: A Systematic Review and Metaanalysis. J Nucl Med 58 (9):1452-1458. CrossRefPubMedGoogle Scholar
  51. 51.
    Reubi JC, Waser B, Friess H, Büchler M, Laissue J (1998) Neurotensin receptors: a new marker for human ductal pancreatic adenocarcinoma. Gut 42 (4):546CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Stabin MG, Kooij PP, Bakker WH, Inoue T, Endo K, Coveney J, de Jong R, Minegishi A (1997) Radiation dosimetry for indium-111-pentetreotide. J Nucl Med 38 (12):1919-1922PubMedGoogle Scholar
  53. 53.
    Sandstrom M, Velikyan I, Garske-Roman U, Sorensen J, Eriksson B, Granberg D, Lundqvist H, Sundin A, Lubberink M (2013) Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J Nucl Med 54 (10):1755-1759. CrossRefPubMedGoogle Scholar
  54. 54.
    Werner RA, Bluemel C, Allen-Auerbach MS, Higuchi T, Herrmann K (2015) 68 Gallium-and 90 Yttrium-/177 Lutetium:“theranostic twins” for diagnosis and treatment of NETs. Annals of nuclear medicine 29 (1):1-7CrossRefPubMedGoogle Scholar
  55. 55.
    Kabasakal L, Demirci E, Ocak M, Decristoforo C, Araman A, Ozsoy Y, Uslu I, Kanmaz B (2012) Comparison of (6)(8)Ga-DOTATATE and (6)(8)Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 39 (8):1271-1277. CrossRefPubMedGoogle Scholar
  56. 56.
    Fani M, Nicolas GP, Wild D (2017) Somatostatin receptor antagonists for imaging and therapy. J Nucl Med 58 (Suppl 2):61S-66SCrossRefPubMedGoogle Scholar
  57. 57.
    Kauhanen S, Seppanen M, Nuutila P (2008) Premedication with carbidopa masks positive finding of insulinoma and beta-cell hyperplasia in [(18)F]-dihydroxy-phenyl-alanine positron emission tomography. J Clin Oncol 26 (32):5307-5308; author reply 5308-5309.
  58. 58.
    Halbrook CJ, Lyssiotis CA (2017) Employing Metabolism to Improve the Diagnosis and Treatment of Pancreatic Cancer. Cancer Cell 31 (1):5-19. CrossRefPubMedGoogle Scholar
  59. 59.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324 (5930):1029-1033. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A (2010) 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res 16 (3):978-985. CrossRefPubMedGoogle Scholar
  61. 61.
    Hindie E (2017) The NETPET Score: Combining FDG and Somatostatin Receptor Imaging for Optimal Management of Patients with Metastatic Well-Differentiated Neuroendocrine Tumors. Theranostics 7 (5):1159-1163. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bucau M, Laurent-Bellue A, Poté N, Hentic O, Cros J, Mikail N, Rebours V, Ruszniewski P, Lebtahi R, Couvelard A (2018) 18F-FDG Uptake in Well-Differentiated Neuroendocrine Tumors Correlates with Both Ki-67 and VHL Pathway Inactivation. Neuroendocrinology 106 (3):274-282CrossRefPubMedGoogle Scholar
  63. 63.
    Zimny M, Bares R, Fass J, Adam G, Cremerius U, Dohmen B, Klever P, Sabri O, Schumpelick V, Buell U (1997) Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. European journal of nuclear medicine 24 (6):678-682CrossRefPubMedGoogle Scholar
  64. 64.
    Korner M, Stockli M, Waser B, Reubi JC (2007) GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 48 (5):736-743. CrossRefPubMedGoogle Scholar
  65. 65.
    Sowa-Staszczak A, Pach D, Mikolajczak R, Macke H, Jabrocka-Hybel A, Stefanska A, Tomaszuk M, Janota B, Gilis-Januszewska A, Malecki M, Kaminski G, Kowalska A, Kulig J, Matyja A, Osuch C, Hubalewska-Dydejczyk A (2013) Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC- 99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging 40 (4):524-531. CrossRefPubMedGoogle Scholar
  66. 66.
    Sowa-Staszczak A, Trofimiuk-Müldner M, Stefańska A, Tomaszuk M, Buziak-Bereza M, Gilis-Januszewska A, Jabrocka-Hybel A, Głowa B, Małecki M, Bednarczuk T (2016) 99mTc labeled glucagon-like peptide-1-analogue (99mTc-GLP1) scintigraphy in the management of patients with occult insulinoma. PloS one 11 (8):e0160714CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Christ E, Wild D, Ederer S, Béhé M, Nicolas G, Caplin ME, Brändle M, Clerici T, Fischli S, Stettler C (2013) Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. The Lancet Diabetes & Endocrinology 1 (2):115-122CrossRefGoogle Scholar
  68. 68.
    Doppman JL, Miller DL, Chang R, Shawker TH, Gorden P, Norton JA (1991) Insulinomas: localization with selective intraarterial injection of calcium. Radiology 178 (1):237-241CrossRefPubMedGoogle Scholar
  69. 69.
    Braatvedt G, Jennison E, Holdaway IM (2014) Comparison of two low-dose calcium infusion schedules for localization of insulinomas by selective pancreatic arterial injection with hepatic venous sampling for insulin. Clinical endocrinology 80 (1):80-84CrossRefPubMedGoogle Scholar
  70. 70.
    Kato M, Doi R, Imamura M, Furutani M, Hosotani R, Shimada Y (1997) Calcium-evoked insulin release from insulinoma cells is mediated via calcium-sensing receptor. Surgery 122 (6):1203-1211Google Scholar
  71. 71.
    Itami A, Kato M, Komoto I, Doi R, Hosotani R, Shimada Y, Imamura M (2001) Human gastrinoma cells express calcium-sensing receptor. Life Sciences 70 (2):119-129.
  72. 72.
    Morganstein D, Lewis D, Jackson J, Isla A, Lynn J, Devendra D, Meeran K, Todd J (2009) The role of arterial stimulation and simultaneous venous sampling in addition to cross-sectional imaging for localisation of biochemically proven insulinoma. Eur Radiol 19 (10):2467-2473CrossRefPubMedGoogle Scholar
  73. 73.
    Yeh R, Dercle L, Garg I, Wang ZJ, Hough DM, Goenka AH (2018) The Role of 18F-FDG PET/CT and PET/MRI in Pancreatic Ductal Adenocarcinoma. Abdominal Radiology 43 (2):415-434CrossRefPubMedGoogle Scholar
  74. 74.
    Attenberger U, Catana C, Chandarana H, Catalano OA, Friedman K, Schonberg SA, Thrall J, Salvatore M, Rosen BR, Guimaraes AR (2015) Whole-body FDG PET-MR oncologic imaging: pitfalls in clinical interpretation related to inaccurate MR-based attenuation correction. Abdominal Imaging 40 (6):1374-1386. CrossRefPubMedGoogle Scholar
  75. 75.
    Kamisawa T, Takum K, Anjiki H, Egawa N, Kurata M, Honda G, Tsuruta K (2010) FDG-PET/CT findings of autoimmune pancreatitis. Hepato-gastroenterology 57 (99-100):447-450PubMedGoogle Scholar
  76. 76.
    Kato K, Nihashi T, Ikeda M, Abe S, Iwano S, Itoh S, Shimamoto K, Naganawa S (2013) Limited Efficacy of 18F-FDG PET/CT for Differentiation Between Metastasis-Free Pancreatic Cancer and Mass-Forming Pancreatitis. Clinical Nuclear Medicine 38 (6):417. CrossRefPubMedGoogle Scholar
  77. 77.
    Matsumoto I, Shirakawa S, Shinzeki M, Asari S, Goto T, Ajiki T, Fukumoto T, Kitajima K, Ku Y (2013) 18-Fluorodeoxyglucose Positron Emission Tomography Does Not Aid in Diagnosis of Pancreatic Ductal Adenocarcinoma. Clinical Gastroenterology and Hepatology 11 (6):712-718. CrossRefPubMedGoogle Scholar
  78. 78.
    Rijkers AP, Valkema R, Duivenvoorden HJ, van Eijck CHJ (2014) Usefulness of F-18-fluorodeoxyglucose positron emission tomography to confirm suspected pancreatic cancer: A meta-analysis. European Journal of Surgical Oncology (EJSO) 40 (7):794-804. CrossRefGoogle Scholar
  79. 79.
    Beiderwellen K, Geraldo L, Ruhlmann V, Heusch P, Gomez B, Nensa F, Umutlu L, Lauenstein TC (2015) Accuracy of [18F]FDG PET/MRI for the Detection of Liver Metastases. PLoS One 10 (9):e0137285. CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Joo I, Lee JM, Lee DH, Lee ES, Paeng JC, Lee SJ, Jang JY, Kim SW, Ryu JK, Lee KB (2017) Preoperative Assessment of Pancreatic Cancer with FDG PET/MR Imaging versus FDG PET/CT Plus Contrast-enhanced Multidetector CT: A Prospective Preliminary Study. Radiology 282 (1):149-159. CrossRefPubMedGoogle Scholar
  81. 81.
    Schaarschmidt BM, Grueneisen J, Heusch P, Gomez B, Umutlu L, Ruhlmann V, Rosenbaum-Krumme S, Antoch G, Buchbender C (2015) Does 18F-FDG PET/MRI reduce the number of indeterminate abdominal incidentalomas compared with 18F-FDG PET/CT? Nucl Med Commun 36 (6):588-595. CrossRefPubMedGoogle Scholar
  82. 82.
    Chen BB, Tien YW, Chang MC, Cheng MF, Chang YT, Yang SH, Wu CH, Kuo TC, Shih IL, Yen RF, Shih TT (2018) Multiparametric PET/MR imaging biomarkers are associated with overall survival in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging 45 (7):1205-1217. CrossRefPubMedGoogle Scholar
  83. 83.
    Dercle L, Deandreis D, Terroir M, Leboulleux S, Lumbroso J, Schlumberger M (2016) Evaluation of 124 I PET/CT and 124 I PET/MRI in the management of patients with differentiated thyroid cancer. European journal of nuclear medicine and molecular imaging 43 (6):1006-1010CrossRefPubMedGoogle Scholar
  84. 84.
    Kolbitsch C, Neji R, Fenchel M, Mallia A, Marsden P, Schaeffter T (2018) Fully integrated 3D high-resolution multicontrast abdominal PET-MR with high scan efficiency. Magn Reson Med 79 (2):900-911. CrossRefPubMedGoogle Scholar
  85. 85.
    Fuin N, Catalano OA, Scipioni M, Canjels LPW, Izquierdo-Garcia D, Pedemonte S, Catana C (2018) Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach. J Nucl Med 59 (9):1474-1479. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yang J, Liu J, Wiesinger F, Menini A, Zhu X, Hope TA, Seo Y, Larson PEZ (2018) Developing an efficient phase-matched attenuation correction method for quiescent period PET in abdominal PET/MRI. Phys Med Biol 63 (18):185002. CrossRefPubMedGoogle Scholar
  87. 87.
    Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H (2013) MRI for attenuation correction in PET: methods and challenges. MAGMA 26 (1):99-113. CrossRefPubMedGoogle Scholar
  88. 88.
    Keereman V, Mollet P, Berker Y, Schulz V, Vandenberghe S (2013) Challenges and current methods for attenuation correction in PET/MR. MAGMA 26 (1):81-98. CrossRefPubMedGoogle Scholar
  89. 89.
    Visvikis D, Monnier F, Bert J, Hatt M, Fayad H (2014) PET/MR attenuation correction: where have we come from and where are we going? Eur J Nucl Med Mol Imaging 41 (6):1172-1175. CrossRefPubMedGoogle Scholar
  90. 90.
    Attenberger U, Catana C, Chandarana H, Catalano OA, Friedman K, Schonberg SA, Thrall J, Salvatore M, Rosen BR, Guimaraes AR (2015) Whole-body FDG PET-MR oncologic imaging: pitfalls in clinical interpretation related to inaccurate MR-based attenuation correction. Abdom Imaging 40 (6):1374-1386. CrossRefPubMedGoogle Scholar
  91. 91.
    Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50 (4):520-526. CrossRefPubMedGoogle Scholar
  92. 92.
    Jeong JH, Cho IH, Kong EJ, Chun KA (2014) Evaluation of Dixon Sequence on Hybrid PET/MR Compared with Contrast-Enhanced PET/CT for PET-Positive Lesions. Nucl Med Mol Imaging 48 (1):26-32. CrossRefPubMedGoogle Scholar
  93. 93.
    Dercle L, Lu L, Lichtenstein P, Yang H, Wang D, Zhu J, Wu F, Piessevaux H, Schwartz LH, Zhao B (2017) Impact of Variability in Portal Venous Phase Acquisition Timing in Tumor Density Measurement and Treatment Response Assessment: Metastatic Colorectal Cancer as a Paradigm. JCO Clinical Cancer Informatics (1):1-8. CrossRefPubMedGoogle Scholar
  94. 94.
    Dercle L, Chisin R, Ammari S, Gillebert Q, Ouali M, Jaudet C, Delord JP, Dierickx L, Zerdoud S, Schlumberger M, Courbon F (2014) Nonsurgical giant cell tumour of the tendon sheath or of the diffuse type: Are MRI or F-FDG PET/CT able to provide an accurate prediction of long-term outcome? Eur J Nucl Med Mol Imaging.
  95. 95.
    Dercle L, Ammari S, Bateson M, Durand PB, Haspinger E, Massard C, Jaudet C, Varga A, Deutsch E, Soria JC, Ferte C (2017) Limits of radiomic-based entropy as a surrogate of tumor heterogeneity: ROI-area, acquisition protocol and tissue site exert substantial influence. Sci Rep 7 (1):7952. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Dierickx LO, Dercle L, Chaltiel L, Caselles O, Brillouet S, Zerdoud S, Courbon F (2017) Evaluation of 2 diuretic 18Fluorine-Fluorodeoxyglucose positron emission tomography/computed tomography imaging protocols for intra-pelvic cancer. Q J Nucl Med Mol Imaging.
  97. 97.
    Sun R, Limkin EJ, Dercle L, Reuze S, Zacharaki EI, Chargari C, Schernberg A, Dirand AS, Alexis A, Paragios N, Deutsch E, Ferte C, Robert C (2017) [Computational medical imaging (radiomics) and potential for immuno-oncology]. Cancer Radiother 21 (6-7):648-654. CrossRefPubMedGoogle Scholar
  98. 98.
    Dercle L, Hartl D, Rozenblum-Beddok L, Mokrane FZ, Seban RD, Yeh R, Bidault F, Ammari S (2018) Diagnostic and prognostic value of 18F-FDG PET, CT, and MRI in perineural spread of head and neck malignancies. Eur Radiol 28 (4):1761-1770. CrossRefPubMedGoogle Scholar
  99. 99.
    Chi W, Warner RRP, Chan DL, Singh S, Segelov E, Strosberg J, Wisnivesky J, Kim MK (2018) Long-term Outcomes of Gastroenteropancreatic Neuroendocrine Tumors. Pancreas 47 (3):321. CrossRefPubMedGoogle Scholar
  100. 100.
    Patel BN, Olcott E, Jeffrey RB (2018) Extrapancreatic perineural invasion in pancreatic adenocarcinoma. Abdom Radiol (NY) 43 (2):323-331. CrossRefGoogle Scholar
  101. 101.
    De Robertis R, Paiella S, Cardobi N, Landoni L, Tinazzi Martini P, Ortolani S, De Marchi G, Gobbo S, Giardino A, Butturini G, Tortora G, Bassi C, D’Onofrio M (2018) Tumor thrombosis: a peculiar finding associated with pancreatic neuroendocrine neoplasms. A pictorial essay. Abdom Radiol (NY) 43 (3):613-619. CrossRefGoogle Scholar
  102. 102.
    Kulke MH, Anthony LB, Bushnell DL, De Herder WW, Goldsmith SJ, Klimstra DS, Marx SJ, Pasieka JL, Pommier RF, Yao JC (2010) NANETS treatment guidelines: well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas 39 (6):735CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sundin A, Arnold R, Baudin E, Cwikla JB, Eriksson B, Fanti S, Fazio N, Giammarile F, Hicks RJ, Kjaer A, Krenning E, Kwekkeboom D, Lombard-Bohas C, O’Connor JM, O’Toole D, Rockall A, Wiedenmann B, Valle JW, Vullierme M-P, all other Antibes Consensus Conference p (2017) ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Radiological, Nuclear Medicine and Hybrid Imaging. Neuroendocrinology 105 (3):212-244. CrossRefPubMedGoogle Scholar
  104. 104.
    Schraml C, Schwenzer NF, Sperling O, Aschoff P, Lichy MP, Muller M, Brendle C, Werner MK, Claussen CD, Pfannenberg C (2013) Staging of neuroendocrine tumours: comparison of [(6)(8)Ga]DOTATOC multiphase PET/CT and whole-body MRI. Cancer Imaging 13:63-72. CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Yu F, Venzon DJ, Serrano J, Goebel SU, Doppman JL, Gibril F, Jensen RT (1999) Prospective study of the clinical course, prognostic factors, causes of death, and survival in patients with long-standing Zollinger-Ellison syndrome. J Clin Oncol 17 (2):615-630. CrossRefPubMedGoogle Scholar
  106. 106.
    Jensen RT, Niederle B, Mitry E, Ramage JK, Steinmuller T, Lewington V, Scarpa A, Sundin A, Perren A, Gross D, O’Connor JM, Pauwels S, Kloppel G, Frascati Consensus C, European Neuroendocrine Tumor S (2006) Gastrinoma (duodenal and pancreatic). Neuroendocrinology 84 (3):173-182. CrossRefPubMedGoogle Scholar
  107. 107.
    Ellison EC, Johnson JA (2009) The Zollinger-Ellison syndrome: a comprehensive review of historical, scientific, and clinical considerations. Current problems in surgery 46 (1):13-106CrossRefPubMedGoogle Scholar
  108. 108.
    d’Assignies G, Fina P, Bruno O, Vullierme MP, Tubach F, Paradis V, Sauvanet A, Ruszniewski P, Vilgrain V (2013) High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology 268 (2):390-399. CrossRefPubMedGoogle Scholar
  109. 109.
    Pavel M, Baudin E, Couvelard A, Krenning E, Oberg K, Steinmuller T, Anlauf M, Wiedenmann B, Salazar R, Barcelona Consensus Conference p (2012) ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 95 (2):157-176. CrossRefPubMedGoogle Scholar
  110. 110.
    Hope TA, Bergsland EK, Bozkurt MF, Graham M, Heaney AP, Herrmann K, Howe JR, Kulke MH, Kunz PL, Mailman J, May L, Metz DC, Millo C, O’Dorisio S, Reidy-Lagunes DL, Soulen MC, Strosberg JR (2018) Appropriate Use Criteria for Somatostatin Receptor PET Imaging in Neuroendocrine Tumors. J Nucl Med 59 (1):66-74. CrossRefPubMedGoogle Scholar
  111. 111.
    Orditura M, Petrillo A, Ventriglia J, Diana A, Laterza MM, Fabozzi A, Savastano B, Franzese E, Conzo G, Santini L, Ciardiello F, De Vita F (2016) Pancreatic neuroendocrine tumors: Nosography, management and treatment. Int J Surg 28 Suppl 1:S156-162. CrossRefPubMedGoogle Scholar
  112. 112.
    Dromain C, de Baere T, Lumbroso J, Caillet H, Laplanche A, Boige V, Ducreux M, Duvillard P, Elias D, Schlumberger M, Sigal R, Baudin E (2005) Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J Clin Oncol 23 (1):70-78. CrossRefPubMedGoogle Scholar
  113. 113.
    de Baère T, Aupérin A, Deschamps F, Chevallier P, Gaubert Y, Boige V, Fonck M, Escudier B, Palussiére J (2015) Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Annals of Oncology 26 (5):987-991. CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Eriksson J, Stålberg P, Nilsson A, Krause J, Lundberg C, Skogseid B, Granberg D, Eriksson B, Åkerström G, Hellman P (2008) Surgery and Radiofrequency Ablation for Treatment of Liver Metastases from Midgut and Foregut Carcinoids and Endocrine Pancreatic Tumors. World J Surg 32 (5):930-938. CrossRefPubMedGoogle Scholar
  115. 115.
    de Baere T, Palussiere J, Auperin A, Hakime A, Abdel-Rehim M, Kind M, Dromain C, Ravaud A, Tebboune N, Boige V, Malka D, Lafont C, Ducreux M (2006) Midterm local efficacy and survival after radiofrequency ablation of lung tumors with minimum follow-up of 1 year: prospective evaluation. Radiology 240 (2):587-596. CrossRefPubMedGoogle Scholar
  116. 116.
    Kennedy A, Bester L, Salem R, Sharma RA, Parks RW, Ruszniewski P (2015) Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HPB (Oxford) 17 (1):29-37. CrossRefGoogle Scholar
  117. 117.
    Vogl TJ, Gruber T, Naguib NNN, Hammerstingl R, Nour-Eldin N-EA (2009) Liver metastases of neuroendocrine tumors: treatment with hepatic transarterial chemotherapy using two therapeutic protocols. American Journal of Roentgenology 193 (4):941-947CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sorbonne Université, Service de Médecine Nucléaire, AP-HP, Hôpital La Pitié-SalpêtrièreParisFrance
  2. 2.Radiology DepartmentToulouse University HospitalToulouseFrance
  3. 3.Department of Radiology, New York Presbyterian HospitalColumbia UniversityNew YorkUSA
  4. 4.Memorial Sloan Kettering Cancer CenterMolecular Imaging and Therapy ServiceNew YorkUSA
  5. 5.Department of Imaging and Nuclear MedicineInstitut Claudius Regaud - Institut Universitaire du Cancer de Toulouse - OncopoleToulouseFrance
  6. 6.Paris Sud University, Kremlin Bicêtre HospitalParisFrance
  7. 7.Department of Nuclear MedicineInstitut Curie-René HugueninSaint-CloudFrance
  8. 8.Department of Endocrine OncologyHôpital Saint LouisParisFrance
  9. 9.UMR 1015, Gustave Roussy Institute, Université Paris-SaclayVillejuifFrance

Personalised recommendations