Advertisement

Comparison of characteristic computed tomographic findings of gastrointestinal and non-gastrointestinal stromal tumors in the small intestine

  • Akitoshi InoueEmail author
  • Shinichi Ota
  • Shigetaka Sato
  • Norihisa Nitta
  • Tomoharu Shimizu
  • Hiromichi Sonoda
  • Masaji Tani
  • Hiromitsu Ban
  • Osamu Inatomi
  • Akira Ando
  • Ryoji Kushima
  • Kiyoshi Murata
Special Section: Distinguished Papers from JSAR
  • 36 Downloads

Abstract

Purpose

We aimed to reveal specific findings of gastrointestinal stromal tumors (GISTs) in the small intestine on contrast-enhanced computed tomography (CT) by comparing GISTs with non-GISTs.

Methods

We enrolled 28 patients with 39 GISTs and 20 patients with 22 non-GISTs who underwent enterectomy with a preoperative diagnosis of small intestinal tumor. All lesions were diagnosed by histopathological examination. Two radiologists independently evaluated internal homogeneity, growth pattern, calcification, intratumoral hemorrhage, degeneration, ulceration, and lymphadenopathy and measured the maximum diameter of the tumor and contrast-enhanced CT (CECT) value of the solid portion as well as the diameter and CT value of the feeding artery and drainage vein on CECT in the arterial and venous phases.

Results

Intratumoral hemorrhage was seen in 15.4% and 25.6% of GISTs and in 0% and 0% of non-GISTs (p = 0.079 and 0.010), with good interobserver agreement (κ = 0.715). The drainage vein diameter correlated well with the maximum diameter of the tumor (r = 0.744, p < 0.001). The CT value of the solid tumor part in the arterial and venous phases (p < 0.01) and the CT value of the drainage vein in the arterial phase (p < 0.05) were higher for GISTs than for non-GISTs (p < 0.01).

Conclusions

Strong parenchymal enhancement with the peak in the arterial phase and the CT value of the drainage vein in the arterial phase was characteristics findings of GIST compared with non-GISTs. The diameter of the drainage vein was proportional to the maximum diameter of GISTs.

Keywords

Gastrointestinal stromal tumor Small intestine Drainage vein Computed tomography 

Notes

Acknowledgements

The authors would like to thank Enago (www.enago.jp) for the English language review.

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.

References

  1. 1.
    Scola D, Bahoura L, Copelan A, et al (2017) Getting the GIST: a pictorial review of the various patterns of presentation of gastrointestinal stromal tumors on imaging. Abdom Radiol 42:1350–1364.  https://doi.org/10.1007/s00261-016-1025-z CrossRefGoogle Scholar
  2. 2.
    Baheti AD, Shinagare AB, O’Neill AC, et al (2015) MDCT and clinicopathological features of small bowel gastrointestinal stromal tumours in 102 patients: A single institute experience. Br J Radiol 88.  https://doi.org/10.1259/bjr.20150085
  3. 3.
    Kochhar R, Manoharan P, Leahy M, Taylor MB (2010) Imaging in gastrointestinal stromal tumours: Current status and future directions. Clin Radiol 65:584–592.  https://doi.org/10.1016/j.crad.2010.02.006 CrossRefPubMedGoogle Scholar
  4. 4.
    Yamamoto H, Oda Y (2015) Gastrointestinal stromal tumor: Recent advances in pathology and genetics. Pathol Int 65:9–18.  https://doi.org/10.1111/pin.12230 CrossRefPubMedGoogle Scholar
  5. 5.
    Levy AD, Remotti HE, Thompson WM, et al (2003) Gastrointestinal stromal tumors: radiologic features with pathologic correlation. Radiographics 23:283–304.  https://doi.org/10.1148/rg.232025146 CrossRefPubMedGoogle Scholar
  6. 6.
    Chavalitdhamrong D, Adler DG (2015) Complications of enteroscopy: how to avoid them and manage them when they arise. Gastrointest Endosc Clin North Am 25:83–95.  https://doi.org/10.1016/j.giec.2014.09.002 CrossRefGoogle Scholar
  7. 7.
    Romano S, De Lutio E, Rollandi GA, et al (2005) Multidetector computed tomography enteroclysis (MDCT-E) with neutral enteral and IV contrast enhancement in tumor detection. Eur Radiol 15:1178–1183.  https://doi.org/10.1007/s00330-005-2673-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Soyer P, Aout M, Hoeffel C, et al (2013) Helical CT-enteroclysis in the detection of small-bowel tumours: A meta-analysis. Eur Radiol 23:388–399.  https://doi.org/10.1007/s00330-012-2595-y CrossRefPubMedGoogle Scholar
  9. 9.
    Vasconcelos RN, Dolan SG, Barlow JM, et al (2017) Impact of CT enterography on the diagnosis of small bowel gastrointestinal stromal tumors. Abdom Radiol 42:1365–1373.  https://doi.org/10.1007/s00261-016-1033-z CrossRefGoogle Scholar
  10. 10.
    Shinya T, Inai R, Tanaka T, et al (2017) Small bowel neoplasms: enhancement patterns and differentiation using post-contrast multiphasic multidetector CT. Abdom Radiol 42:794–801.  https://doi.org/10.1007/s00261-016-0945-y CrossRefGoogle Scholar
  11. 11.
    Foo WC, Liegl-Atzwanger B, Lazar AJ (2012) Pathology of gastrointestinal stromal tumors. Clin Med Insights Pathol 23–33.  https://doi.org/10.4137/cpath.s9689
  12. 12.
    Fletcher CDM, Berman JJ, Corless C, et al (2002) Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 33:459–465.  https://doi.org/10.1053/hupa.2002.123545 CrossRefPubMedGoogle Scholar
  13. 13.
    Joensuu H (2008) Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Hum Pathol 39:1411–1419.  https://doi.org/10.1016/j.humpath.2008.06.025 CrossRefPubMedGoogle Scholar
  14. 14.
    Miettinen M Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23:70–83.  https://doi.org/10.1053/j.semdp.2006.09.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou C, Duan X, Zhang X, et al (2016) Predictive features of CT for risk stratifications in patients with primary gastrointestinal stromal tumour. Eur Radiol 26:3086–3093.  https://doi.org/10.1007/s00330-015-4172-7 CrossRefPubMedGoogle Scholar
  16. 16.
    Bano S, Puri SK, Upreti L, et al (2012) Gastrointestinal stromal tumors (GISTs): An imaging perspective. Jpn J Radiol 30:105–115.  https://doi.org/10.1007/s11604-011-0020-0 CrossRefPubMedGoogle Scholar
  17. 17.
    Burkill GJC, Badran M, Al-Muderis O, et al (2003) Malignant Gastrointestinal Stromal Tumor: Distribution, Imaging Features, and Pattern of Metastatic Spread. Radiology 226:527–532.  https://doi.org/10.1148/radiol.2262011880 CrossRefPubMedGoogle Scholar
  18. 18.
    Ulusan S, Koc Z, Kayaselcuk F (2008) Gastrointestinal stromal tumours: CT findings. Br J Radiol 81:618–23.  https://doi.org/10.1259/bjr/90134736 CrossRefPubMedGoogle Scholar
  19. 19.
    Shinagare AB, Ip IK, Lacson R, Ramaiya NH, George S KR (2015) Gastrointestinal Stromal Tumor : Optimizing the Use of Cross-sectional. Radiology 274:395–404.  https://doi.org/10.1148/radiol.14132456 CrossRefPubMedGoogle Scholar
  20. 20.
    DeMatteo RP, Lewis JJ, Leung D, et al (2000) Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 231:51–8.  https://doi.org/10.1097/00000658-200001000-00008 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Teoh WC, Teo SY, Ong CL (2011) Gastrointestinal stromal tumors presenting as gynecological masses: Usefulness of multidetector computed tomography. Ultrasound Obstet Gynecol 37:107–109.  https://doi.org/10.1002/uog.8801 CrossRefPubMedGoogle Scholar
  22. 22.
    Cai PQ, Lv XF, Tian L, et al (2015) CT characterization of duodenal gastrointestinal stromal tumors. Am J Roentgenol.  https://doi.org/10.2214/ajr.14.12870
  23. 23.
    Jinzaki M, Tanimoto A, Mukai M, et al (2000) Double-phase helical CT of small renal parenchymal neoplasms: Correlation with pathologic findings and tumor angiogenesis. J Comput Assist Tomogr 24:835–842.  https://doi.org/10.1097/00004728-200011000-00002 CrossRefPubMedGoogle Scholar
  24. 24.
    Braschi-Amirfarzan M, Keraliya AR, Krajewski KM, et al (2016) Role of Imaging in Management of Desmoid-type Fibromatosis: A Primer for Radiologists. RadioGraphics 36:762–782.  https://doi.org/10.1148/rg.2016150153 CrossRefGoogle Scholar
  25. 25.
    Cai PQ, Wu YP, Xie CM, et al (2013) Hepatic angiomyolipoma: CT and MR imaging findings with clinical-pathologic comparison. Abdom Imaging 38:482–489.  https://doi.org/10.1007/s00261-012-9932-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Lee SJ, Kim SY, Kim KW, et al (2016) Hepatic angiomyolipoma versus hepatocellular carcinoma in the noncirrhotic liver on gadoxetic acid-enhanced MRI: A diagnostic challenge. Am J Roentgenol 207:562–570.  https://doi.org/10.2214/ajr.15.15602 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Akitoshi Inoue
    • 1
    Email author return OK on get
  • Shinichi Ota
    • 1
  • Shigetaka Sato
    • 1
  • Norihisa Nitta
    • 1
  • Tomoharu Shimizu
    • 2
  • Hiromichi Sonoda
    • 2
  • Masaji Tani
    • 2
  • Hiromitsu Ban
    • 3
  • Osamu Inatomi
    • 3
  • Akira Ando
    • 3
  • Ryoji Kushima
    • 4
  • Kiyoshi Murata
    • 1
  1. 1.Department of RadiologyShiga University of Medical ScienceOtsu CityJapan
  2. 2.Department of SurgeryShiga University of Medical ScienceOtsu CityJapan
  3. 3.Department of GastroenterologyShiga University of Medical ScienceOtsu CityJapan
  4. 4.Department of PathologyShiga University of Medical ScienceOtsu CityJapan

Personalised recommendations