Advertisement

Tumor markers: myths and facts unfolded

  • S. C. FariaEmail author
  • T. Sagebiel
  • M. Patnana
  • V. Cox
  • C. Viswanathan
  • C. Lall
  • A. Qayyum
  • P. R. Bhosale
Review
  • 128 Downloads

Abstract

Objective

The purpose of this article is to review the most commonly used tumor markers in abdominal and pelvic tumors, describe their limitations and explain how to use them in the context of known cancer in order to optimize multidisciplinary care of oncologic patients.

Conclusion

Tumor markers are important for the diagnosis, staging, monitoring of treatment and detection of recurrence in many cancers. This knowledge is crucial in the daily interpretation of images of oncologic and non-oncologic patients. However, radiologists should also be aware of the limitations of the most commonly used tumor markers and they should not be used solely, but interpreted in conjunction with diagnostic imaging, clinical history and physical examination that will help optimize the multidisciplinary care and management of oncologic patients.

Keywords

Tumor markers Carcinoembryonic antigen Prostate-specific antigen Alpha-fetoprotein Carbohydrate antigen 19-9 Carbohydrate antigen 125 Beta subunit of human chorionic gonadotropin Lactate dehydrogenase Chromogranin A 

Notes

Funding

No funding was received for this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Statement for informed consent was not applicable to this manuscript.

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68(1):7–30.  https://doi.org/10.3322/caac.21442 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Duffy MJ (2013) Tumor markers in clinical practice: a review focusing on common solid cancers. Med Princ Pract 22(1):4–11.  https://doi.org/10.1159/000338393 CrossRefPubMedGoogle Scholar
  3. 3.
    Holdenrieder S, Pagliaro L, Morgenstern D, Dayyani F (2016) Clinically meaningful use of blood tumor markers in oncology. Biomed Res Int 2016:9795269.  https://doi.org/10.1155/2016/9795269 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lech G, Slotwinski R, Slodkowski M, Krasnodebski IW (2016) Colorectal cancer tumour markers and biomarkers: recent therapeutic advances. World J Gastroenterol 22(5):1745–1755.  https://doi.org/10.3748/wjg.v22.i5.1745 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Aslam MI, Kelkar A, Sharpe D, Jameson JS (2010) Ten years experience of managing the primary tumours in patients with stage IV colorectal cancers. Int J Surg 8(4):305–313.  https://doi.org/10.1016/j.ijsu.2010.03.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Goldstein MJ, Mitchell EP (2005) Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer. Cancer Invest 23(4):338–351CrossRefGoogle Scholar
  7. 7.
    Iwanicki-Caron I, Di Fiore F, Roque I, et al. (2008) Usefulness of the serum carcinoembryonic antigen kinetic for chemotherapy monitoring in patients with unresectable metastasis of colorectal cancer. J Clin Oncol 26(22):3681–3686.  https://doi.org/10.1200/jco.2007.15.0904 CrossRefPubMedGoogle Scholar
  8. 8.
    Locker GY, Hamilton S, Harris J, et al. (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24(33):5313–5327.  https://doi.org/10.1200/jco.2006.08.2644 CrossRefPubMedGoogle Scholar
  9. 9.
    Wiratkapun S, Kraemer M, Seow-Choen F, Ho YH, Eu KW (2001) High preoperative serum carcinoembryonic antigen predicts metastatic recurrence in potentially curative colonic cancer: results of a five-year study. Dis Colon Rectum 44(2):231–235CrossRefGoogle Scholar
  10. 10.
    Su BB, Shi H, Wan J (2012) Role of serum carcinoembryonic antigen in the detection of colorectal cancer before and after surgical resection. World J Gastroenterol 18(17):2121–2126.  https://doi.org/10.3748/wjg.v18.i17.2121 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Miles K, Burkill G (2007) Colorectal cancer: imaging surveillance following resection of primary tumour. Cancer Imaging 7(Spec No A):S143–S149.  https://doi.org/10.1102/1470-7330.2007.9011 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Scheer MG, Sloots CE, van der Wilt GJ, Ruers TJ (2008) Management of patients with asymptomatic colorectal cancer and synchronous irresectable metastases. Ann Oncol 19(11):1829–1835.  https://doi.org/10.1093/annonc/mdn398 CrossRefPubMedGoogle Scholar
  13. 13.
    Scheer A, Auer RA (2009) Surveillance after curative resection of colorectal cancer. Clin Colon Rectal Surg 22(4):242–250.  https://doi.org/10.1055/s-0029-1242464 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Duffy MJ, Lamerz R, Haglund C, et al. (2014) Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int J Cancer 134(11):2513–2522.  https://doi.org/10.1002/ijc.28384 CrossRefPubMedGoogle Scholar
  15. 15.
    Konishi F (2002) CEA doubling time and CEA half-life in the prediction of recurrences after colorectal cancer surgery. Jpn J Clin Oncol 32(2):41–42CrossRefGoogle Scholar
  16. 16.
    Connor S, Hart MG, Redhead DN, et al. (2007) Follow-up and outcomes for resection of colorectal liver metastases in Edinburgh. Eur J Surg Oncol 33(1):55–60.  https://doi.org/10.1016/j.ejso.2006.09.017 CrossRefPubMedGoogle Scholar
  17. 17.
    Bipat S, van Leeuwen MS, Comans EF, et al. (2005) Colorectal liver metastases: CT, MR imaging, and PET for diagnosis—meta-analysis. Radiology 237(1):123–131.  https://doi.org/10.1148/radiol.2371042060 CrossRefPubMedGoogle Scholar
  18. 18.
    Vreugdenburg TD, Ma N, Duncan JK, et al. (2016) Comparative diagnostic accuracy of hepatocyte-specific gadoxetic acid (Gd-EOB-DTPA) enhanced MR imaging and contrast enhanced CT for the detection of liver metastases: a systematic review and meta-analysis. Int J Colorectal Dis 31(11):1739–1749.  https://doi.org/10.1007/s00384-016-2664-9 CrossRefPubMedGoogle Scholar
  19. 19.
    Gade M, Kubik M, Fisker RV, Thorlacius-Ussing O, Petersen LJ (2015) Diagnostic value of (18)F-FDG PET/CT as first choice in the detection of recurrent colorectal cancer due to rising CEA. Cancer Imaging 15:11.  https://doi.org/10.1186/s40644-015-0048-y CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lu YY, Chen JH, Chien CR, et al. (2013) Use of FDG-PET or PET/CT to detect recurrent colorectal cancer in patients with elevated CEA: a systematic review and meta-analysis. Int J Colorectal Dis 28(8):1039–1047.  https://doi.org/10.1007/s00384-013-1659-z CrossRefPubMedGoogle Scholar
  21. 21.
    Mittal BR, Senthil R, Kashyap R, et al. (2011) 18F-FDG PET-CT in evaluation of postoperative colorectal cancer patients with rising CEA level. Nucl Med Commun 32(9):789–793.  https://doi.org/10.1097/MNM.0b013e3283477dd7 CrossRefPubMedGoogle Scholar
  22. 22.
    Selzner M, Hany TF, Wildbrett P, et al. (2004) Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg 240(6):1027–1034 ((discussion 1035–1026))CrossRefGoogle Scholar
  23. 23.
    de Baere T, Tselikas L, Yevich S, et al. (2017) The role of image-guided therapy in the management of colorectal cancer metastatic disease. Eur J Cancer 75:231–242.  https://doi.org/10.1016/j.ejca.2017.01.010 CrossRefPubMedGoogle Scholar
  24. 24.
    Attard G, Parker C, Eeles RA, et al. (2016) Prostate cancer. Lancet 387(10013):70–82.  https://doi.org/10.1016/s0140-6736(14)61947-4 CrossRefPubMedGoogle Scholar
  25. 25.
    Grubb RL 3rd (2018) Prostate cancer: update on early detection and new biomarkers. Mo Med 115(2):132–134PubMedPubMedCentralGoogle Scholar
  26. 26.
    Schmid HP, Riesen W, Prikler L (2004) Update on screening for prostate cancer with prostate-specific antigen. Crit Rev Oncol Hematol 50(1):71–78.  https://doi.org/10.1016/j.critrevonc.2003.11.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Adhyam M, Gupta AK (2012) A review on the clinical utility of PSA in cancer prostate. Indian J Surg Oncol 3(2):120–129.  https://doi.org/10.1007/s13193-012-0142-6 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Salman JW, Schoots IG, Carlsson SV, Jenster G, Roobol MJ (2015) Prostate specific antigen as a tumor marker in prostate cancer: biochemical and clinical aspects. Adv Exp Med Biol 867:93–114.  https://doi.org/10.1007/978-94-017-7215-0_7 CrossRefPubMedGoogle Scholar
  29. 29.
    Nordstrom T, Akre O, Aly M, Gronberg H, Eklund M (2018) Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer. Prostate Cancer Prostatic Dis 21(1):57–63.  https://doi.org/10.1038/s41391-017-0024-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Drazer MW, Huo D, Eggener SE (2015) National Prostate cancer screening rates after the 2012 US preventive services task force recommendation discouraging prostate-specific antigen-based screening. J Clin Oncol 33(22):2416–2423.  https://doi.org/10.1200/jco.2015.61.6532 CrossRefPubMedGoogle Scholar
  31. 31.
    Moyer VA, Force USPST (2012) Screening for prostate cancer: U.S. preventive services task force recommendation statement. Ann Intern Med 157(2):120–134.  https://doi.org/10.7326/0003-4819-157-2-201207170-00459 CrossRefPubMedGoogle Scholar
  32. 32.
    Stamey TA, Yang N, Hay AR, et al. (1987) Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med 317(15):909–916.  https://doi.org/10.1056/nejm198710083171501 CrossRefPubMedGoogle Scholar
  33. 33.
    de Boo L, Pintilie M, Yip P, et al. (2015) Time from first detectable PSA following radical prostatectomy to biochemical recurrence: a competing risk analysis. Can Urol Assoc J 9(1–2):E14–E21.  https://doi.org/10.5489/cuaj.2147 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Makarewicz R, Lebioda A, Terlikiewicz J, Biedka M, Wisniewski T (2009) PSA bouncing after brachytherapy HDR and external beam radiation therapy: a study of 121 patients with minimum 5-years follow-up. J Contemp Brachyther 1(2):92–96Google Scholar
  35. 35.
    Cornford P, Bellmunt J, Bolla M, et al. (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 71(4):630–642.  https://doi.org/10.1016/j.eururo.2016.08.002 CrossRefPubMedGoogle Scholar
  36. 36.
    Futterer JJ (2012) Imaging of recurrent prostate cancer. Radiol Clin North Am 50(6):1075–1083.  https://doi.org/10.1016/j.rcl.2012.08.005 CrossRefPubMedGoogle Scholar
  37. 37.
    Pucar D, Hricak H, Shukla-Dave A, et al. (2007) Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 69(1):62–69.  https://doi.org/10.1016/j.ijrobp.2007.03.065 CrossRefPubMedGoogle Scholar
  38. 38.
    Alonzo F, Melodelima C, Bratan F, et al. (2016) Detection of locally radio-recurrent prostate cancer at multiparametric MRI: can dynamic contrast-enhanced imaging be omitted? Diagn Interv Imaging 97(4):433–441.  https://doi.org/10.1016/j.diii.2016.01.008 CrossRefPubMedGoogle Scholar
  39. 39.
    Schaefer O, Langer M (2007) Detection of recurrent rectal cancer with CT, MRI and PET/CT. Eur Radiol 17(8):2044–2054.  https://doi.org/10.1007/s00330-007-0613-2 CrossRefPubMedGoogle Scholar
  40. 40.
    El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576.  https://doi.org/10.1053/j.gastro.2007.04.061 CrossRefPubMedGoogle Scholar
  41. 41.
    Mazzanti R, Arena U, Tassi R (2016) Hepatocellular carcinoma: where are we? World J Exp Med 6(1):21–36.  https://doi.org/10.5493/wjem.v6.i1.21 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhao YJ, Ju Q, Li GC (2013) Tumor markers for hepatocellular carcinoma. Mol Clin Oncol 1(4):593–598.  https://doi.org/10.3892/mco.2013.119 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kew M (1974) Alpha-fetoprotein in primary liver cancer and other diseases. Gut 15(10):814–821CrossRefGoogle Scholar
  44. 44.
    Gupta S, Bent S, Kohlwes J (2003) Test characteristics of alpha-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C. A systematic review and critical analysis. Ann Intern Med 139(1):46–50CrossRefGoogle Scholar
  45. 45.
    Trevisani F, D’Intino PE, Morselli-Labate AM, et al. (2001) Serum alpha-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HBsAg and anti-HCV status. J Hepatol 34(4):570–575CrossRefGoogle Scholar
  46. 46.
    Saffroy R, Pham P, Reffas M, et al. (2007) New perspectives and strategy research biomarkers for hepatocellular carcinoma. Clin Chem Lab Med 45(9):1169–1179.  https://doi.org/10.1515/cclm.2007.262 CrossRefPubMedGoogle Scholar
  47. 47.
    Sakata J, Shirai Y, Wakai T, et al. (2008) Preoperative predictors of vascular invasion in hepatocellular carcinoma. Eur J Surg Oncol 34(8):900–905.  https://doi.org/10.1016/j.ejso.2008.01.031 CrossRefPubMedGoogle Scholar
  48. 48.
    Johnson PJ, Williams R (1980) Serum alpha-fetoprotein estimations and doubling time in hepatocellular carcinoma: influence of therapy and possible value in early detection. J Natl Cancer Inst 64(6):1329–1332CrossRefGoogle Scholar
  49. 49.
    Vibert E, Azoulay D, Hoti E, et al. (2010) Progression of alphafetoprotein before liver transplantation for hepatocellular carcinoma in cirrhotic patients: a critical factor. Am J Transplant 10(1):129–137.  https://doi.org/10.1111/j.1600-6143.2009.02750.x CrossRefPubMedGoogle Scholar
  50. 50.
    Ldos SS, de Mattos AA, Zanotelli ML, et al. (2016) Alpha-fetoprotein level predicts recurrence after transplantation in hepatocellular carcinoma. Medicine (Baltimore) 95(3):e2478.  https://doi.org/10.1097/md.0000000000002478 CrossRefGoogle Scholar
  51. 51.
    McIntire KR, Vogel CL, Primack A, Waldmann TA, Kyalwazi SK (1976) Effect of surgical and chemotherapeutic treatment on alpha-fetoprotein levels in patients with hepatocellular carcinoma. Cancer 37(2):677–683CrossRefGoogle Scholar
  52. 52.
    Bruix J, Gores GJ, Mazzaferro V (2014) Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 63(5):844–855.  https://doi.org/10.1136/gutjnl-2013-306627 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Llovet JM, Ricci S, Mazzaferro V, et al. (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390.  https://doi.org/10.1056/NEJMoa0708857 CrossRefPubMedGoogle Scholar
  54. 54.
    Oka H, Saito A, Ito K, et al. (2001) Multicenter prospective analysis of newly diagnosed hepatocellular carcinoma with respect to the percentage of Lens culinaris agglutinin-reactive alpha-fetoprotein. J Gastroenterol Hepatol 16(12):1378–1383CrossRefGoogle Scholar
  55. 55.
    Bertino G, Ardiri A, Malaguarnera M, et al. (2012) Hepatocellualar carcinoma serum markers. Semin Oncol 39(4):410–433.  https://doi.org/10.1053/j.seminoncol.2012.05.001 CrossRefPubMedGoogle Scholar
  56. 56.
    Johnson PJ, Pirrie SJ, Cox TF, et al. (2014) The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomark Prev 23(1):144–153.  https://doi.org/10.1158/1055-9965.epi-13-0870 CrossRefGoogle Scholar
  57. 57.
    Zhang Q, Zeng L, Chen Y, et al. (2016) Pancreatic cancer epidemiology, detection, and management. Gastroenterol Res Pract 2016:8962321.  https://doi.org/10.1155/2016/8962321 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Thomas A, Dajani K, Neoptolemos JP, Ghaneh P (2010) Adjuvant therapy in pancreatic cancer. Dig Dis 28(4–5):684–692.  https://doi.org/10.1159/000320099 CrossRefPubMedGoogle Scholar
  59. 59.
    Ballehaninna UK, Chamberlain RS (2011) Serum CA 19-9 as a biomarker for pancreatic cancer-A comprehensive review. Indian J Surg Oncol 2(2):88–100.  https://doi.org/10.1007/s13193-011-0042-1 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Del Villano BC, Brennan S, Brock P, et al. (1983) Radioimmunometric assay for a monoclonal antibody-defined tumor marker, CA 19-9. Clin Chem 29(3):549–552PubMedGoogle Scholar
  61. 61.
    Poruk KE, Gay DZ, Brown K, et al. (2013) The clinical utility of CA 19-9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr Mol Med 13(3):340–351PubMedPubMedCentralGoogle Scholar
  62. 62.
    Berger AC, Meszoely IM, Ross EA, Watson JC, Hoffman JP (2004) Undetectable preoperative levels of serum CA 19-9 correlate with improved survival for patients with resectable pancreatic adenocarcinoma. Ann Surg Oncol 11(7):644–649.  https://doi.org/10.1245/aso.2004.11.025 CrossRefPubMedGoogle Scholar
  63. 63.
    Halm U, Schumann T, Schiefke I, et al. (2000) Decrease of CA 19-9 during chemotherapy with gemcitabine predicts survival time in patients with advanced pancreatic cancer. Br J Cancer 82(5):1013–1016.  https://doi.org/10.1054/bjoc.1999.1035 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ferrone CR, Finkelstein DM, Thayer SP, et al. (2006) Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol 24(18):2897–2902.  https://doi.org/10.1200/jco.2005.05.3934 CrossRefPubMedGoogle Scholar
  65. 65.
    Humphris JL, Chang DK, Johns AL, et al. (2012) The prognostic and predictive value of serum CA199 in pancreatic cancer. Ann Oncol 23(7):1713–1722.  https://doi.org/10.1093/annonc/mdr561 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cramer DW (2012) The epidemiology of endometrial and ovarian cancer. Hematol Oncol Clin N Am 26(1):1–12.  https://doi.org/10.1016/j.hoc.2011.10.009 CrossRefGoogle Scholar
  67. 67.
    Mironov S, Akin O, Pandit-Taskar N, Hann LE (2007) Ovarian cancer. Radiol Clin N Am 45(1):149–166.  https://doi.org/10.1016/j.rcl.2006.10.012 CrossRefPubMedGoogle Scholar
  68. 68.
    Aggarwal P, Kehoe S (2010) Serum tumour markers in gynaecological cancers. Maturitas 67(1):46–53.  https://doi.org/10.1016/j.maturitas.2010.04.017 CrossRefPubMedGoogle Scholar
  69. 69.
    Duffy MJ, Bonfrer JM, Kulpa J, et al. (2005) CA125 in ovarian cancer: European Group on tumor markers guidelines for clinical use. Int J Gynecol Cancer 15(5):679–691.  https://doi.org/10.1111/j.1525-1438.2005.00130.x CrossRefPubMedGoogle Scholar
  70. 70.
    Soletormos G, Duffy MJ, Othman Abu Hassan S, et al. (2016) Clinical use of cancer biomarkers in epithelial ovarian cancer: updated guidelines from the European group on tumor markers. Int J Gynecol Cancer 26(1):43–51.  https://doi.org/10.1097/igc.0000000000000586 CrossRefPubMedGoogle Scholar
  71. 71.
    Cohen JG, White M, Cruz A, Farias-Eisner R (2014) In 2014, can we do better than CA125 in the early detection of ovarian cancer? World J Biol Chem 5(3):286–300.  https://doi.org/10.4331/wjbc.v5.i3.286 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Buys SS, Partridge E, Black A, et al. (2011) Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. JAMA 305(22):2295–2303.  https://doi.org/10.1001/jama.2011.766 CrossRefPubMedGoogle Scholar
  73. 73.
    Petrucelli N, Daly MB, Feldman GL (1993) BRCA1 and BRCA2 hereditary breast and ovarian cancer. In: Pagon RA, Adam MP, Ardinger HH, et al. (eds) GeneReviews(R). Seattle: University of Washington, SeattleGoogle Scholar
  74. 74.
    Lu KH, Daniels M (2013) Endometrial and ovarian cancer in women with Lynch syndrome: update in screening and prevention. Fam Cancer 12(2):273–277.  https://doi.org/10.1007/s10689-013-9664-5 CrossRefPubMedGoogle Scholar
  75. 75.
    Bast RC Jr, Xu FJ, Yu YH, et al. (1998) CA 125: the past and the future. Int J Biol Mark 13(4):179–187CrossRefGoogle Scholar
  76. 76.
    Rein BJ, Gupta S, Dada R, et al. (2011) Potential markers for detection and monitoring of ovarian cancer. J Oncol 2011:475983.  https://doi.org/10.1155/2011/475983 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Skates SJ, Jacobs IJ, Knapp RC (2001) Tumor markers in screening for ovarian cancer. Methods Mol Med 39:61–73.  https://doi.org/10.1385/1-59259-071-3:61 CrossRefPubMedGoogle Scholar
  78. 78.
    Bast RC Jr, Badgwell D, Lu Z, et al. (2005) New tumor markers: CA125 and beyond. Int J Gynecol Cancer 15(Suppl 3):274–281.  https://doi.org/10.1111/j.1525-1438.2005.00441.x CrossRefPubMedGoogle Scholar
  79. 79.
    Bottoni P, Scatena R (2015) The role of CA 125 as tumor marker: biochemical and clinical aspects. Adv Exp Med Biol 867:229–244.  https://doi.org/10.1007/978-94-017-7215-0_14 CrossRefPubMedGoogle Scholar
  80. 80.
    Funt SA, Hricak H, Abu-Rustum N, et al. (2004) Role of CT in the management of recurrent ovarian cancer. AJR Am J Roentgenol 182(2):393–398.  https://doi.org/10.2214/ajr.182.2.1820393 CrossRefPubMedGoogle Scholar
  81. 81.
    Balestreri L, Bison L, Sorio R, et al. (2002) Abdominal recurrence of ovarian cancer: value of abdominal MR in patients with positive CA125 and negative CT. Radiol Med 104(5–6):426–436PubMedGoogle Scholar
  82. 82.
    Gu P, Pan LL, Wu SQ, Sun L, Huang G (2009) CA 125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma: a systematic review and meta-analysis. Eur J Radiol 71(1):164–174.  https://doi.org/10.1016/j.ejrad.2008.02.019 CrossRefPubMedGoogle Scholar
  83. 83.
    Bhosale P, Peungjesada S, Wei W, et al. (2010) Clinical utility of positron emission tomography/computed tomography in the evaluation of suspected recurrent ovarian cancer in the setting of normal CA-125 levels. Int J Gynecol Cancer 20(6):936–944.  https://doi.org/10.1111/IGC.0b013e3181e82a7f CrossRefPubMedGoogle Scholar
  84. 84.
    Han LY, Karavasilis V, Hagen T, et al. (2010) Doubling time of serum CA125 is an independent prognostic factor for survival in patients with ovarian cancer relapsing after first-line chemotherapy. Eur J Cancer 46(8):1359–1364.  https://doi.org/10.1016/j.ejca.2010.02.012 CrossRefPubMedGoogle Scholar
  85. 85.
    Nowak M, Janas L, Stachowiak G, Stetkiewicz T, Wilczynski JR (2015) Current clinical application of serum biomarkers to detect ovarian cancer. Prz Menopauzalny 14(4):254–259.  https://doi.org/10.5114/pm.2015.55887 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Anastasi E, Marchei GG, Viggiani V, et al. (2010) HE4: a new potential early biomarker for the recurrence of ovarian cancer. Tumour Biol 31(2):113–119.  https://doi.org/10.1007/s13277-009-0015-y CrossRefPubMedGoogle Scholar
  87. 87.
    Moore RG, McMeekin DS, Brown AK, et al. (2009) A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol Oncol 112(1):40–46.  https://doi.org/10.1016/j.ygyno.2008.08.031 CrossRefPubMedGoogle Scholar
  88. 88.
    Nolen BM, Lokshin AE (2012) Multianalyte assay systems in the differential diagnosis of ovarian cancer. Expert Opin Med Diagn 6(2):131–138.  https://doi.org/10.1517/17530059.2012.661711 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Bast RC Jr, Skates S, Lokshin A, Moore RG (2012) Differential diagnosis of a pelvic mass: improved algorithms and novel biomarkers. Int J Gynecol Cancer 22(Suppl 1):S5–S8.  https://doi.org/10.1097/IGC.0b013e318251c97d CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Jacobs I, Oram D, Fairbanks J, et al. (1990) A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol 97(10):922–929CrossRefGoogle Scholar
  91. 91.
    Tingulstad S, Hagen B, Skjeldestad FE, et al. (1996) Evaluation of a risk of malignancy index based on serum CA125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses. Br J Obstet Gynaecol 103(8):826–831CrossRefGoogle Scholar
  92. 92.
    Timmerman D, Valentin L, Bourne TH, et al. (2000) Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the international ovarian tumor analysis (IOTA) group. Ultrasound Obstet Gynecol 16(5):500–505.  https://doi.org/10.1046/j.1469-0705.2000.00287.x CrossRefPubMedGoogle Scholar
  93. 93.
    Van Calster B, Van Hoorde K, Valentin L, et al. (2014) Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study. BMJ 349:g5920.  https://doi.org/10.1136/bmj.g5920 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ueno T, Tanaka YO, Nagata M, et al. (2004) Spectrum of germ cell tumors: from head to toe. Radiographics 24(2):387–404.  https://doi.org/10.1148/rg.242035082 CrossRefPubMedGoogle Scholar
  95. 95.
    Milose JC, Filson CP, Weizer AZ, Hafez KS, Montgomery JS (2011) Role of biochemical markers in testicular cancer: diagnosis, staging, and surveillance. Open Access J Urol 4:1–8.  https://doi.org/10.2147/oaju.s15063 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Bosl GJ, Motzer RJ (1997) Testicular germ-cell cancer. N Engl J Med 337(4):242–253.  https://doi.org/10.1056/nejm199707243370406 CrossRefPubMedGoogle Scholar
  97. 97.
    Germa-Lluch JR, del Muro XG, Maroto P, et al. (2002) Clinical pattern and therapeutic results achieved in 1490 patients with germ-cell tumours of the testis: the experience of the Spanish germ-cell cancer group (GG). Eur Urol 42(6):553–562 ((discussion 562-553))CrossRefGoogle Scholar
  98. 98.
    Barlow LJ, Badalato GM, McKiernan JM (2010) Serum tumor markers in the evaluation of male germ cell tumors. Nat Rev Urol 7(11):610–617.  https://doi.org/10.1038/nrurol.2010.166 CrossRefPubMedGoogle Scholar
  99. 99.
    Favilla V, Cimino S, Madonia M, Morgia G (2010) New advances in clinical biomarkers in testis cancer. Front Biosci (Elite Ed) 2:456–477Google Scholar
  100. 100.
    Smith HO, Berwick M, Verschraegen CF, et al. (2006) Incidence and survival rates for female malignant germ cell tumors. Obstet Gynecol 107(5):1075–1085.  https://doi.org/10.1097/01.AOG.0000216004.22588.ce CrossRefPubMedGoogle Scholar
  101. 101.
    Parkinson CA, Hatcher HM, Earl HM, Ajithkumar TV (2011) Multidisciplinary management of malignant ovarian germ cell tumours. Gynecol Oncol 121(3):625–636.  https://doi.org/10.1016/j.ygyno.2010.12.351 CrossRefPubMedGoogle Scholar
  102. 102.
    Oronsky B, Ma PC, Morgensztern D, Carter CA (2017) Nothing but NET: a review of neuroendocrine tumors and carcinomas. Neoplasia 19(12):991–1002.  https://doi.org/10.1016/j.neo.2017.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Modlin IM, Moss SF, Oberg K, et al. (2010) Gastrointestinal neuroendocrine (carcinoid) tumours: current diagnosis and management. Med J Aust 193(1):46–52PubMedGoogle Scholar
  104. 104.
    Modlin IM, Gustafsson BI, Moss SF, et al. (2010) Chromogranin A—biological function and clinical utility in neuro endocrine tumor disease. Ann Surg Oncol 17(9):2427–2443.  https://doi.org/10.1245/s10434-010-1006-3 CrossRefPubMedGoogle Scholar
  105. 105.
    Pulvirenti A, Rao D, McIntyre CA, et al. (2018) Limited role of Chromogranin A as clinical biomarker for pancreatic neuroendocrine tumors. HPB (Oxford).  https://doi.org/10.1016/j.hpb.2018.09.016 CrossRefGoogle Scholar
  106. 106.
    Nolting S, Kuttner A, Lauseker M, et al. (2012) Chromogranin a as serum marker for gastroenteropancreatic neuroendocrine tumors: a single center experience and literature review. Cancers (Basel) 4(1):141–155.  https://doi.org/10.3390/cancers4010141 CrossRefGoogle Scholar
  107. 107.
    Frilling A, Modlin IM, Kidd M, et al. (2014) Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol 15(1):e8–21.  https://doi.org/10.1016/s1470-2045(13)70362-0 CrossRefPubMedGoogle Scholar
  108. 108.
    Bajetta E, Ferrari L, Martinetti A, et al. (1999) Chromogranin A, neuron specific enolase, carcinoembryonic antigen, and hydroxyindole acetic acid evaluation in patients with neuroendocrine tumors. Cancer 86(5):858–865CrossRefGoogle Scholar
  109. 109.
    Wang YH, Yang QC, Lin Y, et al. (2014) Chromogranin A as a marker for diagnosis, treatment, and survival in patients with gastroenteropancreatic neuroendocrine neoplasm. Medicine (Baltimore) 93(27):e247.  https://doi.org/10.1097/MD.0000000000000247 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. C. Faria
    • 1
    • 3
  • T. Sagebiel
    • 1
  • M. Patnana
    • 1
  • V. Cox
    • 1
  • C. Viswanathan
    • 1
  • C. Lall
    • 2
  • A. Qayyum
    • 1
  • P. R. Bhosale
    • 1
  1. 1.Department of Diagnostic RadiologyThe University of Texas M. D. Anderson Cancer CenterHoustonUSA
  2. 2.University of FloridaJacksonvilleUSA
  3. 3.HoustonUSA

Personalised recommendations