Advertisement

Abdominal Radiology

, Volume 44, Issue 5, pp 1686–1702 | Cite as

Mucinous appendiceal neoplasms: classification, imaging, and HIPEC

  • David J. Bartlett
  • Paul G. ThackerJr.
  • Travis E. Grotz
  • Rondell P. Graham
  • Joel G. Fletcher
  • Wendaline M. VanBuren
  • Veena R. Iyer
  • Jeff L. Fidler
  • Christine O. Menias
  • Nabil Wasif
  • Shannon P. SheedyEmail author
Review Paper
  • 523 Downloads

Abstract

Recent advances, specifically cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC), offer advantages compared to the traditional therapeutic approach of systemic chemotherapy in the treatment of peritoneal carcinomatosis from mucinous appendiceal neoplasms (MAN). This review provides an up-to-date, comprehensive summary of the histologic classification of MAN, reviews common imaging findings of mucoceles and pseudomyxoma peritonei, and describes the radiologist’s role in the multidisciplinary care team in quantifying disease and in helping select patients for definitive surgery.

Keywords

Mucinous appendiceal neoplasm, MAN Hyperthermic intraperitoneal chemotherapy, HIPEC Cytoreductive surgery Pseudomyxoma peritonei, PMP 

Notes

Acknowledgments

The authors acknowledge the assistance of Sonia Watson, PhD, in preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

261_2018_1888_MOESM1_ESM.pdf (65 kb)
Supplementary material 1 (PDF 64 kb)

References

  1. 1.
    Cress RD, Chen YS, Morris CR, Petersen M, Leiserowitz GS (2015) Characteristics of Long-Term Survivors of Epithelial Ovarian Cancer. Obstet Gynecol 126:491-497.  https://doi.org/10.1097/AOG.0000000000000981 CrossRefGoogle Scholar
  2. 2.
    Ikoma N, Blum M, Chiang YJ, et al. (2016) Yield of Staging Laparoscopy and Lavage Cytology for Radiologically Occult Peritoneal Carcinomatosis of Gastric Cancer. Ann Surg Oncol 23:4332-4337.  https://doi.org/10.1245/s10434-016-5409-7 CrossRefGoogle Scholar
  3. 3.
    Jayne DG, Fook S, Loi C, Seow-Choen F (2002) Peritoneal carcinomatosis from colorectal cancer. Br J Surg 89:1545-1550.  https://doi.org/10.1046/j.1365-2168.2002.02274.x CrossRefGoogle Scholar
  4. 4.
    Fernandez-Trigo V, Stuart OA, Stephens AD, Hoover LD, Sugarbaker PH (1996) Surgically directed chemotherapy: heated intraperitoneal lavage with mitomycin C. Cancer Treat Res 81:51-61CrossRefGoogle Scholar
  5. 5.
    Jacquet P, Sugarbaker PH (1996) Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res 82:359-374CrossRefGoogle Scholar
  6. 6.
    Pestieau SR, Stuart OA, Chang D, Jacquet P, Sugarbaker PH (1998) Pharmacokinetics of intraperitoneal gemcitabine in a rat model. Tumori 84:706-711CrossRefGoogle Scholar
  7. 7.
    Ronnett BM, Zahn CM, Kurman RJ, et al. (1995) Disseminated peritoneal adenomucinosis and peritoneal mucinous carcinomatosis. A clinicopathologic analysis of 109 cases with emphasis on distinguishing pathologic features, site of origin, prognosis, and relationship to “pseudomyxoma peritonei”. Am J Surg Pathol 19:1390-1408CrossRefGoogle Scholar
  8. 8.
    Sugarbaker PH (1994) Pseudomyxoma peritonei. A cancer whose biology is characterized by a redistribution phenomenon. Ann Surg 219:109-111CrossRefGoogle Scholar
  9. 9.
    Sugarbaker PH, Chang D (1999) Results of treatment of 385 patients with peritoneal surface spread of appendiceal malignancy. Ann Surg Oncol 6:727-731CrossRefGoogle Scholar
  10. 10.
    Stephens AD, Belliveau JF, Sugarbaker PH (1996) Intraoperative hyperthermic lavage with cisplatin for peritoneal carcinomatosis and sarcomatosis. Cancer Treat Res 81:15-30CrossRefGoogle Scholar
  11. 11.
    Connor SJ, Hanna GB, Frizelle FA (1998) Appendiceal tumors: retrospective clinicopathologic analysis of appendiceal tumors from 7,970 appendectomies. Dis Colon Rectum 41:75-80CrossRefGoogle Scholar
  12. 12.
    Dincel O, Goksu M, Turk BA, Pehlivanoglu B, Isler S (2018) Incidental Findings in Routine Histopathological Examination of Appendectomy Specimens; Retrospective Analysis of 1970 Patients. Indian J Surg 80:48-53.  https://doi.org/10.1007/s12262-016-1557-z CrossRefGoogle Scholar
  13. 13.
    Pickhardt PJ, Levy AD, Rohrmann CA Jr, Kende AI (2003) Primary neoplasms of the appendix: radiologic spectrum of disease with pathologic correlation. Radiographics 23:645-662.  https://doi.org/10.1148/rg.233025134 CrossRefGoogle Scholar
  14. 14.
    Turaga KK, Pappas SG, Gamblin T (2012) Importance of histologic subtype in the staging of appendiceal tumors. Ann Surg Oncol 19:1379-1385.  https://doi.org/10.1245/s10434-012-2238-1 CrossRefGoogle Scholar
  15. 15.
    Carr NJ, Bibeau F, Bradley RF, et al. (2017) The histopathological classification, diagnosis and differential diagnosis of mucinous appendiceal neoplasms, appendiceal adenocarcinomas and pseudomyxoma peritonei. Histopathology 71:847-858.  https://doi.org/10.1111/his.13324 CrossRefGoogle Scholar
  16. 16.
    Carr NJ, Cecil TD, Mohamed F, Sobin LH, Sugarbaker PH, Gonzalez-Moreno S, Taflampas P, Chapman S, Moran BJ, Peritoneal Surface Oncology Group I (2016) A Consensus for Classification and Pathologic Reporting of Pseudomyxoma Peritonei and Associated Appendiceal Neoplasia: The Results of the Peritoneal Surface Oncology Group International (PSOGI) Modified Delphi Process. Am J Surg Pathol 40:14-26.  https://doi.org/10.1097/PAS.0000000000000535
  17. 17.
    Carr NJ, McCarthy WF, Sobin LH (1995) Epithelial noncarcinoid tumors and tumor-like lesions of the appendix. A clinicopathologic study of 184 patients with a multivariate analysis of prognostic factors. Cancer 75:757-768CrossRefGoogle Scholar
  18. 18.
    Misdraji J, Yantiss RK, Graeme-Cook FM, Balis UJ, Young RH (2003) Appendiceal mucinous neoplasms: a clinicopathologic analysis of 107 cases. Am J Surg Pathol 27:1089-1103CrossRefGoogle Scholar
  19. 19.
    Yantiss RK, Shia J, Klimstra DS, et al. (2009) Prognostic significance of localized extra-appendiceal mucin deposition in appendiceal mucinous neoplasms. Am J Surg Pathol 33:248-255.  https://doi.org/10.1097/PAS.0b013e31817ec31e CrossRefGoogle Scholar
  20. 20.
    Davison JM, Choudry HA, Pingpank JF, et al. (2014) Clinicopathologic and molecular analysis of disseminated appendiceal mucinous neoplasms: identification of factors predicting survival and proposed criteria for a three-tiered assessment of tumor grade. Mod Pathol 27:1521-1539.  https://doi.org/10.1038/modpathol.2014.37 CrossRefGoogle Scholar
  21. 21.
    Shetty S, Natarajan B, Thomas P, et al. (2013) Proposed classification of pseudomyxoma peritonei: influence of signet ring cells on survival. Am Surg 79:1171-1176Google Scholar
  22. 22.
    Sirintrapun SJ, Blackham AU, Russell G, et al. (2014) Significance of signet ring cells in high-grade mucinous adenocarcinoma of the peritoneum from appendiceal origin. Hum Pathol 45:1597-1604.  https://doi.org/10.1016/j.humpath.2014.03.007 CrossRefGoogle Scholar
  23. 23.
    Brierley JD, Gospodarowicz MK, Wittekind C (2017) TNM Classiofication of Malignant Tumours, 8th edn. Oxford: John Wiley & SonsGoogle Scholar
  24. 24.
    American Joint Committee on Cancer (2017) Ch. 19. Appendix - Carcinoma. In: Amin MB (ed) AJCC Cancer Staging Manual. 8th edn. Springer Nature, p 243Google Scholar
  25. 25.
    Ruiz-Tovar J, Teruel DG, Castineiras VM, et al. (2007) Mucocele of the appendix. World J Surg 31:542-548.  https://doi.org/10.1007/s00268-006-0454-1 CrossRefGoogle Scholar
  26. 26.
    Smeenk RM, van Velthuysen ML, Verwaal VJ, Zoetmulder FA (2008) Appendiceal neoplasms and pseudomyxoma peritonei: a population based study. Eur J Surg Oncol 34:196-201.  https://doi.org/10.1016/j.ejso.2007.04.002 CrossRefGoogle Scholar
  27. 27.
    Carr NJ, Sobin LH (1996) Unusual tumors of the appendix and pseudomyxoma peritonei. Semin Diagn Pathol 13:314-325Google Scholar
  28. 28.
    Isaacs KL, Warshauer DM (1992) Mucocele of the appendix: computed tomographic, endoscopic, and pathologic correlation. Am J Gastroenterol 87:787-789Google Scholar
  29. 29.
    Carr NJ, Finch J, Ilesley IC, et al. (2012) Pathology and prognosis in pseudomyxoma peritonei: a review of 274 cases. J Clin Pathol 65:919-923.  https://doi.org/10.1136/jclinpath-2012-200843 CrossRefGoogle Scholar
  30. 30.
    Leen SL, Singh N (2012) Pathology of primary and metastatic mucinous ovarian neoplasms. J Clin Pathol 65:591-595.  https://doi.org/10.1136/jclinpath-2011-200162 CrossRefGoogle Scholar
  31. 31.
    Dineen SP, Royal RE, Hughes MS, et al. (2015) A Simplified Preoperative Assessment Predicts Complete Cytoreduction and Outcomes in Patients with Low-Grade Mucinous Adenocarcinoma of the Appendix. Ann Surg Oncol 22:3640-3646.  https://doi.org/10.1245/s10434-015-4446-y CrossRefGoogle Scholar
  32. 32.
    Gilly FN, Cotte E, Brigand C, et al. (2006) Quantitative prognostic indices in peritoneal carcinomatosis. Eur J Surg Oncol 32:597-601.  https://doi.org/10.1016/j.ejso.2006.03.002 CrossRefGoogle Scholar
  33. 33.
    Harmon RL, Sugarbaker PH (2005) Prognostic indicators in peritoneal carcinomatosis from gastrointestinal cancer. Int Semin Surg Oncol 2:3.  https://doi.org/10.1186/1477-7800-2-3 CrossRefGoogle Scholar
  34. 34.
    Yoon W, Alame A, Berri R (2014) Peritoneal Surface Disease Severity Score as a predictor of resectability in the treatment of peritoneal surface malignancies. Am J Surg 207:403-407; discussion 406-407.  https://doi.org/10.1016/j.amjsurg.2013.09.021
  35. 35.
    Aziz O, Jaradat I, Chakrabarty B, et al. (2018) Predicting Survival After Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Appendix Adenocarcinoma. Dis Colon Rectum 61:795-802.  https://doi.org/10.1097/DCR.0000000000001076 Google Scholar
  36. 36.
    Baratti D, Kusamura S, Nonaka D, et al. (2008) Pseudomyxoma peritonei: clinical pathological and biological prognostic factors in patients treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC). Ann Surg Oncol 15:526-534.  https://doi.org/10.1245/s10434-007-9691-2 CrossRefGoogle Scholar
  37. 37.
    Chua TC, Yan TD, Smigielski ME, et al. (2009) Long-term survival in patients with pseudomyxoma peritonei treated with cytoreductive surgery and perioperative intraperitoneal chemotherapy: 10 years of experience from a single institution. Ann Surg Oncol 16:1903-1911.  https://doi.org/10.1245/s10434-009-0341-8 CrossRefGoogle Scholar
  38. 38.
    El Halabi H, Gushchin V, Francis J, et al. (2012) The role of cytoreductive surgery and heated intraperitoneal chemotherapy (CRS/HIPEC) in patients with high-grade appendiceal carcinoma and extensive peritoneal carcinomatosis. Ann Surg Oncol 19:110-114.  https://doi.org/10.1245/s10434-011-1840-y CrossRefGoogle Scholar
  39. 39.
    Grotz TE, Overman MJ, Eng C, et al. (2017) Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Moderately and Poorly Differentiated Appendiceal Adenocarcinoma: Survival Outcomes and Patient Selection. Ann Surg Oncol 24:2646-2654.  https://doi.org/10.1245/s10434-017-5938-8 CrossRefGoogle Scholar
  40. 40.
    Jimenez W, Sardi A, Nieroda C, et al. (2014) Predictive and prognostic survival factors in peritoneal carcinomatosis from appendiceal cancer after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol 21:4218-4225.  https://doi.org/10.1245/s10434-014-3869-1 CrossRefGoogle Scholar
  41. 41.
    Polanco PM, Ding Y, Knox JM, et al. (2016) Outcomes of Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemoperfusion in Patients with High-Grade, High-Volume Disseminated Mucinous Appendiceal Neoplasms. Ann Surg Oncol 23:382-390.  https://doi.org/10.1245/s10434-015-4838-z CrossRefGoogle Scholar
  42. 42.
    Votanopoulos KI, Bartlett D, Moran B, et al. (2018) PCI is Not Predictive of Survival After Complete CRS/HIPEC in Peritoneal Dissemination from High-Grade Appendiceal Primaries. Ann Surg Oncol 25:674-678.  https://doi.org/10.1245/s10434-017-6315-3 CrossRefGoogle Scholar
  43. 43.
    Pelz JO, Stojadinovic A, Nissan A, Hohenberger W, Esquivel J (2009) Evaluation of a peritoneal surface disease severity score in patients with colon cancer with peritoneal carcinomatosis. J Surg Oncol 99:9-15.  https://doi.org/10.1002/jso.21169 CrossRefGoogle Scholar
  44. 44.
    Esquivel J, Garcia SS, Hicken W, et al. (2014) Evaluation of a new staging classification and a Peritoneal Surface Disease Severity Score (PSDSS) in 229 patients with mucinous appendiceal neoplasms with or without peritoneal dissemination. J Surg Oncol 110:656-660.  https://doi.org/10.1002/jso.23679 CrossRefGoogle Scholar
  45. 45.
    Duhr CD, Kenn W, Kickuth R, et al. (2011) Optimizing of preoperative computed tomography for diagnosis in patients with peritoneal carcinomatosis. World J Surg Oncol 9:171.  https://doi.org/10.1186/1477-7819-9-171 CrossRefGoogle Scholar
  46. 46.
    Esquivel J, Chua TC, Stojadinovic A, et al. (2010) Accuracy and clinical relevance of computed tomography scan interpretation of peritoneal cancer index in colorectal cancer peritoneal carcinomatosis: a multi-institutional study. J Surg Oncol 102:565-570.  https://doi.org/10.1002/jso.21601 CrossRefGoogle Scholar
  47. 47.
    Flicek K, Ashfaq A, Johnson CD, et al. (2016) Correlation of Radiologic with Surgical Peritoneal Cancer Index Scores in Patients with Pseudomyxoma Peritonei and Peritoneal Carcinomatosis: How Well Can We Predict Resectability? J Gastrointest Surg 20:307-312.  https://doi.org/10.1007/s11605-015-2880-6 CrossRefGoogle Scholar
  48. 48.
    Koh JL, Yan TD, Glenn D, Morris DL (2009) Evaluation of preoperative computed tomography in estimating peritoneal cancer index in colorectal peritoneal carcinomatosis. Ann Surg Oncol 16:327-333.  https://doi.org/10.1245/s10434-008-0234-2 CrossRefGoogle Scholar
  49. 49.
    Laghi A, Bellini D, Rengo M, et al. (2017) Diagnostic performance of computed tomography and magnetic resonance imaging for detecting peritoneal metastases: systematic review and meta-analysis. Radiol Med 122:1-15.  https://doi.org/10.1007/s11547-016-0682-x CrossRefGoogle Scholar
  50. 50.
    Jacquet P, Sugarbaker PH (1996) Peritoneal Carcinomatosis: Principles of Management. Cancer Treatment and Research, vol 82. Springer US,Google Scholar
  51. 51.
    Sugarbaker PH, Zhu BW, Sese GB, Shmookler B (1993) Peritoneal carcinomatosis from appendiceal cancer: results in 69 patients treated by cytoreductive surgery and intraperitoneal chemotherapy. Dis Colon Rectum 36:323-329CrossRefGoogle Scholar
  52. 52.
    Chua TC, Moran BJ, Sugarbaker PH, et al. (2012) Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Clin Oncol 30:2449-2456.  https://doi.org/10.1200/JCO.2011.39.7166 CrossRefGoogle Scholar
  53. 53.
    Guaglio M, Sinukumar S, Kusamura S, et al. (2018) Clinical Surveillance After Macroscopically Complete Surgery for Low-Grade Appendiceal Mucinous Neoplasms (LAMN) with or Without Limited Peritoneal Spread: Long-Term Results in a Prospective Series. Annals of Surgical Oncology 25:878-884.  https://doi.org/10.1245/s10434-017-6305-5 CrossRefGoogle Scholar
  54. 54.
    Kelly KJ (2015) Management of Appendix Cancer. Clin Colon Rectal Surg 28:247-255.  https://doi.org/10.1055/s-0035-1564433 CrossRefGoogle Scholar
  55. 55.
    Sugarbaker PH (2006) New standard of care for appendiceal epithelial neoplasms and pseudomyxoma peritonei syndrome? Lancet Oncol 7:69-76.  https://doi.org/10.1016/S1470-2045(05)70539-8 CrossRefGoogle Scholar
  56. 56.
    Issels RD, Lindner LH, Verweij J, Wessalowski R, Reichardt P, Wust P, Ghadjar P, Hohenberger P, Angele M, Salat C, Vujaskovic Z, Daugaard S, Mella O, Mansmann U, Durr HR, Knosel T, Abdel-Rahman S, Schmidt M, Hiddemann W, Jauch KW, Belka C, Gronchi A, European Organization for the R, Treatment of Cancer-Soft T, Bone Sarcoma G, the European Society for Hyperthermic O (2018) Effect of Neoadjuvant Chemotherapy Plus Regional Hyperthermia on Long-term Outcomes Among Patients With Localized High-Risk Soft Tissue Sarcoma: The EORTC 62961-ESHO 95 Randomized Clinical Trial. JAMA Oncol 4:483-492.  https://doi.org/10.1001/jamaoncol.2017.4996 CrossRefGoogle Scholar
  57. 57.
    Issels RD, Lindner LH, Verweij J, Wust P, Reichardt P, Schem BC, Abdel-Rahman S, Daugaard S, Salat C, Wendtner CM, Vujaskovic Z, Wessalowski R, Jauch KW, Durr HR, Ploner F, Baur-Melnyk A, Mansmann U, Hiddemann W, Blay JY, Hohenberger P, European Organisation for R, Treatment of Cancer Soft T, Bone Sarcoma G, European Society for Hyperthermic O (2010) Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol 11:561-570.  https://doi.org/10.1016/S1470-2045(10)70071-1 CrossRefGoogle Scholar
  58. 58.
    Refaat T, Sachdev S, Sathiaseelan V, et al. (2015) Hyperthermia and radiation therapy for locally advanced or recurrent breast cancer. Breast 24:418-425.  https://doi.org/10.1016/j.breast.2015.03.008 CrossRefGoogle Scholar
  59. 59.
    Maebayashi T, Ishibashi N, Aizawa T, et al. (2017) Treatment outcomes of concurrent hyperthermia and chemoradiotherapy for pancreatic cancer: Insights into the significance of hyperthermia treatment. Oncol Lett 13:4959-4964.  https://doi.org/10.3892/ol.2017.6066 CrossRefGoogle Scholar
  60. 60.
    Oei AL, Vriend LE, Crezee J, Franken NA, Krawczyk PM (2015) Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol 10:165.  https://doi.org/10.1186/s13014-015-0462-0 CrossRefGoogle Scholar
  61. 61.
    Repasky EA, Evans SS, Dewhirst MW (2013) Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol Res 1:210-216.  https://doi.org/10.1158/2326-6066.CIR-13-0118 CrossRefGoogle Scholar
  62. 62.
    Smeenk RM, Verwaal VJ, Antonini N, Zoetmulder FA (2007) Survival analysis of pseudomyxoma peritonei patients treated by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg 245:104-109.  https://doi.org/10.1097/01.sla.0000231705.40081.1a CrossRefGoogle Scholar
  63. 63.
    Elias D, Honore C, Ciuchendea R, et al. (2008) Peritoneal pseudomyxoma: results of a systematic policy of complete cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Br J Surg 95:1164-1171.  https://doi.org/10.1002/bjs.6235 CrossRefGoogle Scholar
  64. 64.
    Stewart JH, Shen P, Russell GB, et al. (2006) Appendiceal neoplasms with peritoneal dissemination: outcomes after cytoreductive surgery and intraperitoneal hyperthermic chemotherapy. Ann Surg Oncol 13:624-634.  https://doi.org/10.1007/s10434-006-9708-2 CrossRefGoogle Scholar
  65. 65.
    Delhorme JB, Elias D, Varatharajah S, et al. (2016) Can a Benefit be Expected from Surgical Debulking of Unresectable Pseudomyxoma Peritonei? Ann Surg Oncol 23:1618-1624.  https://doi.org/10.1245/s10434-015-5019-9 CrossRefGoogle Scholar
  66. 66.
    Chua TC, Yan TD, Saxena A, Morris DL (2009) Should the treatment of peritoneal carcinomatosis by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy still be regarded as a highly morbid procedure?: a systematic review of morbidity and mortality. Ann Surg 249:900-907.  https://doi.org/10.1097/SLA.0b013e3181a45d86 CrossRefGoogle Scholar
  67. 67.
    Bartlett EK, Meise C, Roses RE, et al. (2014) Morbidity and mortality of cytoreduction with intraperitoneal chemotherapy: outcomes from the ACS NSQIP database. Ann Surg Oncol 21:1494-1500.  https://doi.org/10.1245/s10434-013-3223-z CrossRefGoogle Scholar
  68. 68.
    Jacquet P, Jelinek JS, Steves MA, Sugarbaker PH (1993) Evaluation of computed tomography in patients with peritoneal carcinomatosis. Cancer 72:1631-1636CrossRefGoogle Scholar
  69. 69.
    Low RN, Barone RM, Lacey C, et al. (1997) Peritoneal tumor: MR imaging with dilute oral barium and intravenous gadolinium-containing contrast agents compared with unenhanced MR imaging and CT. Radiology 204:513--520.  https://doi.org/10.1148/radiology.204.2.9240546 CrossRefGoogle Scholar
  70. 70.
    Low RN, Sebrechts CP, Barone RM, Muller W (2009) Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings–a feasibility study. AJR Am J Roentgenol 193:461-470.  https://doi.org/10.2214/AJR.08.1753 CrossRefGoogle Scholar
  71. 71.
    de Bree E, Koops W, Kroger R, et al. (2006) Preoperative computed tomography and selection of patients with colorectal peritoneal carcinomatosis for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Eur J Surg Oncol 32:65-71.  https://doi.org/10.1016/j.ejso.2005.09.016 CrossRefGoogle Scholar
  72. 72.
    de Bree E, Koops W, Kroger R, et al. (2004) Peritoneal carcinomatosis from colorectal or appendiceal origin: correlation of preoperative CT with intraoperative findings and evaluation of interobserver agreement. J Surg Oncol 86:64-73.  https://doi.org/10.1002/jso.20049 CrossRefGoogle Scholar
  73. 73.
    Dromain C, Leboulleux S, Auperin A, et al. (2008) Staging of peritoneal carcinomatosis: enhanced CT vs. PET/CT. Abdom Imaging 33:87-93.  https://doi.org/10.1007/s00261-007-9211-7 CrossRefGoogle Scholar
  74. 74.
    Yan TD, Morris DL, Shigeki K, Dario B, Marcello D (2008) Preoperative investigations in the management of peritoneal surface malignancy with cytoreductive surgery and perioperative intraperitoneal chemotherapy: Expert consensus statement. J Surg Oncol 98:224-227.  https://doi.org/10.1002/jso.21069 CrossRefGoogle Scholar
  75. 75.
    Pfannenberg C, Königsrainer I, Aschoff P, et al. (2009) 18F-FDG-PET/CT to select patients with peritoneal carcinomatosis for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Annals of Surgical Oncology 16:1295-1303CrossRefGoogle Scholar
  76. 76.
    Sommariva A, Evangelista L, Pintacuda G, et al. (2018) Diagnostic value of contrast-enhanced CT combined with 18-FDG PET in patients selected for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC). Abdom Radiol (NY) 43:1094-1100.  https://doi.org/10.1007/s00261-017-1276-3 CrossRefGoogle Scholar
  77. 77.
    Franiel T, Diederichs G, Engelken F, et al. (2009) Multi-detector CT in peritoneal carcinomatosis: diagnostic role of thin slices and multiplanar reconstructions. Abdom Imaging 34:49-54.  https://doi.org/10.1007/s00261-008-9372-z CrossRefGoogle Scholar
  78. 78.
    Laterza B, Kusamura S, Baratti D, Oliva GD, Deraco M (2009) Role of explorative laparoscopy to evaluate optimal candidates for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with peritoneal mesothelioma. Vivo 23:187-190Google Scholar
  79. 79.
    Iversen LH, Rasmussen PC, Laurberg S (2013) Value of laparoscopy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis. British Journal of Surgery 100:285-292.  https://doi.org/10.1002/bjs.8908 CrossRefGoogle Scholar
  80. 80.
    Nougaret S, Addley HC, Colombo PE, et al. (2012) Ovarian carcinomatosis: how the radiologist can help plan the surgical approach. Radiographics 32:1775-1800CrossRefGoogle Scholar
  81. 81.
    Sugarbaker PH, Sardi A, Brown G, et al. (2017) Concerning CT features used to select patients for treatment of peritoneal metastases, a pictoral essay. International Journal of Hyperthermia 33:497-504.  https://doi.org/10.1080/02656736.2017.1317368 CrossRefGoogle Scholar
  82. 82.
    Chandramohan A, Thrower A, Smith SA, Shah N, Moran B (2017) “PAUSE”: a method for communicating radiological extent of peritoneal malignancy. Clin Radiol 72:972-980.  https://doi.org/10.1016/j.crad.2017.07.005 CrossRefGoogle Scholar
  83. 83.
    Morano WF, Khalili M, Chi DS, Bowne WB, Esquivel J (2018) Clinical studies in CRS and HIPEC: Trials, tribulations, and future directions-A systematic review. J Surg Oncol 117:245-259.  https://doi.org/10.1002/jso.24813 CrossRefGoogle Scholar
  84. 84.
    Simon-Gracia L, Hunt H, Teesalu T (2018) Peritoneal Carcinomatosis Targeting with Tumor Homing Peptides. Molecules.  https://doi.org/10.3390/molecules23051190 Google Scholar
  85. 85.
    Harlaar NJ, Koller M, de Jongh SJ, et al. (2016) Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol Hepatol 1:283-290.  https://doi.org/10.1016/S2468-1253(16)30082-6 CrossRefGoogle Scholar
  86. 86.
    Dohan A, Hoeffel C, Soyer P, et al. (2017) Evaluation of the peritoneal carcinomatosis index with CT and MRI. Br J Surg 104:1244-1249.  https://doi.org/10.1002/bjs.10527 CrossRefGoogle Scholar
  87. 87.
    Kim SH, Lim HK, Lee WJ, Lim JH, Byun JY (1998) Mucocele of the appendix: ultrasonographic and CT findings. Abdom Imaging 23:292-296CrossRefGoogle Scholar
  88. 88.
    Parulekar SG (1983) Ultrasonographic findings in diseases of the appendix. J Ultrasound Med 2:59-64CrossRefGoogle Scholar
  89. 89.
    Caspi B, Cassif E, Auslender R, Herman A, Hagay Z, Appelman Z (2004) The onion skin sign: a specific sonographic marker of appendiceal mucocele. J Ultrasound Med 23:117-121; quiz 122-113Google Scholar
  90. 90.
    Lim HK, Lee WJ, Kim SH, et al. (1999) Primary mucinous cystadenocarcinoma of the appendix: CT findings. AJR Am J Roentgenol 173:1071-1074.  https://doi.org/10.2214/ajr.173.4.10511181 CrossRefGoogle Scholar
  91. 91.
    Wang H, Chen YQ, Wei R, et al. (2013) Appendiceal mucocele: A diagnostic dilemma in differentiating malignant from benign lesions with CT. AJR Am J Roentgenol 201:W590-595.  https://doi.org/10.2214/AJR.12.9260 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of RadiologyMayo ClinicRochesterUSA
  2. 2.Department of Hepatobiliary and Pancreatic SurgeryMayo ClinicRochesterUSA
  3. 3.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA
  4. 4.Department of RadiologyMayo ClinicScottsdaleUSA
  5. 5.Department of General SurgeryMayo ClinicScottsdaleUSA

Personalised recommendations