Advertisement

The utility of diffusion-weighted imaging in improving the sensitivity of LI-RADS classification of small hepatic observations suspected of malignancy

  • Mohammad Abd Alkhalik BashaEmail author
  • Rania Refaat
  • Faten Fawzy Mohammad
  • Mai E. M. Khamis
  • Ahmed Mohamed El-Maghraby
  • Ahmed A. El Sammak
  • Rania M. Al-Molla
  • Heba A. E. Mohamed
  • Ahmad Abdullah Alnaggar
  • Hanan Abdelhameed Hassan
  • Taghreed M. Azmy
  • Ahmed M. Alaa Eldin
  • Mostafa Mohamad Assy
  • Mohamad Zakarya AlAzzazy
  • Khaled Mohamed Altaher
  • Heba Fathy Tantawy
  • Sameh Saber
  • Mohamed I. Amin
  • Ahmed Mohamed Alsowey
  • Mohamed Hesham Saleh Radwan
  • Heba F. Taha
  • Talaat Fathy
  • Amr Shaaban Hanafy
  • Eman H. Abdelbary
Hepatobiliary
  • 145 Downloads

Abstract

Purpose

We investigated the added value of diffusion-weighted imaging (DWI)/apparent diffusion coefficient (ADC) in the categorization of small hepatic observation (≤ 20 mm) detected in patients with chronic liver disease in reference to LI-RADS (liver imaging reporting and data system) classification system.

Methods

We prospectively evaluated 165 patients with chronic liver disease with small hepatic observations (≤ 20 mm) which were previously categorized as LI-RADS grade 3–5 on dynamic contrast-enhanced CT (DCE-CT). All patients were submitted to a functional MRI including DCE and DWI. Using LI-RADS v2017, two radiologists independently evaluated the observations and assigned a LI-RADS category to each observation using DCE-MRI alone and combined DCE-MRI and DWI/ADC. In the combined technique, the radiologists assigned a LI-RADS category based on a modified LI-RADS criteria in which restricted diffusion on DWI was considered a major feature of HCC. We evaluated the inter-reader agreement with Kappa statistics and compared the diagnostic performance of the LI-RADS with two imaging techniques by Fisher’s exact test using histopathology as the reference standard.

Results

Combined technique in LI-RADS yielded better sensitivities (reader 1, 97% [65/67]; reader 2, 95.5% [64/67]) for HCC diagnosis than DCE-MRI alone (reader 1, 80.6% [54/67], p = 0.005; reader 2, 83.6% [56/67], p = 0.04). The specificities were insignificantly lower in combined technique (reader 1, 88.4% [107/121]; reader 2, 77.7% [94/121]) than in DCE-MRI alone (reader 1, 90.9% [110/121], p = 0.67; reader 2, 79.3% [96/121], p = 0.88). The inter-reader agreement of the LI-RADS scores between combined technique and DCE-MRI was good (κ = 0.765).

Conclusion

The use of DWI/ADC as an additional major criterion, improved the sensitivity of LI-RADS in the diagnosis of HCC while keeping high specificity.

Keywords

LI-RADS Perfusion MRI DWI Hepatocellular Carcinoma 

Notes

Acknowledgements

The authors thank all staff members and colleagues in the Radiology Department-Zagazig University for their helpful cooperation and all the study participants for their patience and support.

Funding

The authors state that this work has not received any funding.

Compliance with ethical standards

Conflict of interest

The authors of this manuscript declare no relevant conflicts of interest, and no relationships with any companies, whose products or services may be related to the subject matter of the article.

Ethical approval

Institutional review board approval was obtained.

Informed consent

Written informed consent was obtained from all patients.

References

  1. 1.
    Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53:1020–1022.CrossRefGoogle Scholar
  2. 2.
    Kudo M, Matsui O, Izumi N, et al (2014) JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the liver Cancer Study Group of Japan. Liver Cancer 3:458–468.CrossRefGoogle Scholar
  3. 3.
    European Association For The Study Of The Liver (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56: 908–943.CrossRefGoogle Scholar
  4. 4.
    American College of Radiology (2014) Liver Imaging Reporting and Data System version 2014. Reston: American College of Radiology.Google Scholar
  5. 5.
    Cruite I, Tang A, Sirlin CB (2013) Imaging-based diagnostic systems for hepatocellular carcinoma. AJR 201:41–55.CrossRefGoogle Scholar
  6. 6.
    Patella F, Pesapane F, Fumarola EM, et al (2018) CT-MRI LI-RADS v2017: A Comprehensive Guide for Beginners. Journal of Clinical and Translational Hepatology 6:1–5.CrossRefGoogle Scholar
  7. 7.
    An C, Rakhmonova G, Choi JY, Kim MJ (2016) Liver imaging reporting and data system (LI-RADS) version 2014: understanding and application of the diagnostic algorithm. Clin Mol Hepatol 22:296–307.CrossRefGoogle Scholar
  8. 8.
    Fusco R, Sansone M, Petrillo A (2015) The Use of the Levenberg-Marquardt and Variable Projection Curve-Fitting Algorithm in Intravoxel Incoherent Motion Method for DW-MRI Data Analysis. Appl Magn Reson 46:551–58.CrossRefGoogle Scholar
  9. 9.
    Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66CrossRefGoogle Scholar
  10. 10.
    Galea N, Cantisani V, Taouli B (2013) Liver lesion detection and characterization: role of diffusionweighted imaging. J Magn Reson Imaging 37:1260–1276.CrossRefGoogle Scholar
  11. 11.
    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR 188:1622–1635.CrossRefGoogle Scholar
  12. 12.
    Vandecaveye V, De Keyzer F, Verslype C, et al (2009) Diffusion-weighted MRI provides additional value to conventional dynamic contrast enhanced MRI for detection of hepatocellular carcinoma. European Radiology 19:2456–66.CrossRefGoogle Scholar
  13. 13.
    Xu PJ, Yan FH, Wang JH, et al (2010) Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. Journal of Computer Assisted Tomography 34:506–512.CrossRefGoogle Scholar
  14. 14.
    Cha DI, Jang KM, Kim SH, Kang TW, Song KD (2017). Liver Imaging Reporting and Data System on CT and gadoxetic acid-enhanced MRI with diffusion-weighted imaging. European radiology 27:4394-4405.CrossRefGoogle Scholar
  15. 15.
    Hicks RM, Yee J, Ohliger MA, et al (2016) Comparison of diffusion-weighted imaging and T2-weighted single shot fast spin-echo: Implications for LI-RADS characterization of hepatocellular carcinoma. Magnetic resonance imaging 34:915–921.CrossRefGoogle Scholar
  16. 16.
    Piana G, Trinquart L, Meskine N, et al (2011) New MR imaging criteria with a diffusion-weighted sequence for the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Hepatol 55:126–132.CrossRefGoogle Scholar
  17. 17.
    Xu PJ, Yan FH, Wang JH, Lin J, Ji Y (2009) Added value of breath hold diffusion‐weighted MRI in detection of small hepatocellular carcinoma lesions compared with dynamic contrast‐enhanced MRI alone using receiver operating characteristic curve analysis. Journal of magnetic resonance imaging 29:341–349.CrossRefGoogle Scholar
  18. 18.
    Wu LM, Xu JR, Lu Q, Hua J, Chen J, Hu J (2013) A pooled analysis of diffusion‐weighted imaging in the diagnosis of hepatocellular carcinoma in chronic liver diseases. Journal of gastroenterology and hepatology 28:227–234.CrossRefGoogle Scholar
  19. 19.
    Parikh T, Drew SJ, Lee VS, et al (2008) Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 246:812–822.CrossRefGoogle Scholar
  20. 20.
    Hecht EM, Holland AE, Israel GM, et al (2006) Hepatocellular carcinoma in the cirrhotic liver: gadolinium-enhanced 3D T1-weighted MR imaging as a stand-alone sequence for diagnosis. Radiology 239:438–447.CrossRefGoogle Scholar
  21. 21.
    Kim YK, Lee YH, Kim CS, Han YM (2008) Added diagnostic value of T2-weighted MR imaging to gadolinium-enhanced three-dimensional dynamic MR imaging for the detection of small hepatocellular carcinomas. Eur J Radiol 67:304–310.CrossRefGoogle Scholar
  22. 22.
    Nasu K, Kuroki Y, Tsukamoto T, Nakajima H, Mori K, Minami M (2009) Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. AJR 193:438–444.CrossRefGoogle Scholar
  23. 23.
    Muhi A, Ichikawa T, Motosugi U, et al (2009) High b-value diffusion weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging 30:1005–1011.CrossRefGoogle Scholar
  24. 24.
    Padhani AR, Liu G, Koh DM, et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125.CrossRefGoogle Scholar
  25. 25.
    Ichikawa T, Haradome H, Hachiya J, et al (1999) Diffusion-weighted MR imaging with single-shot echo-planar imaging in the upper abdomen: preliminary clinical experience in 61 patients. Abdom Imaging 24:456–461.CrossRefGoogle Scholar
  26. 26.
    Kele PG, van der Jagt EJ (2010) Diffusion weighted imaging in the liver. World J Gastroenterol 16:1567–1576CrossRefGoogle Scholar
  27. 27.
    Fowler KJ, Brown JJ, Narra VR (2011) Magnetic resonance imaging of focal liver lesions: approach to imaging diagnosis. Hepatology 54: 2227–2237CrossRefGoogle Scholar
  28. 28.
    Shankar S, Kalra N, Bhatia A, et al (2016) Role of diffusion weighted imaging (DWI) for hepatocellular carcinoma (HCC) detection and its grading on 3T MRI: a prospective study. Journal of clinical and experimental hepatology 6:303–310.CrossRefGoogle Scholar
  29. 29.
    Maiwald B, Lobsien D, Kahn T, Stumpp P (2014) Is 3-Tesla Gd-EOB-DTPA-enhanced MRI with diffusion-weighted imaging superior to 64-slice contrast-enhanced CT for the diagnosis of hepatocellular carcinoma? PloS one, 9 (11), e111935.CrossRefGoogle Scholar
  30. 30.
    Inchingolo R, De Gaetano AM, Curione D, et al (2015) Role of diffusion-weighted imaging, apparent diffusion coefficient and correlation with hepatobiliary phase findings in the differentiation of hepatocellular carcinoma from dysplastic nodules in cirrhotic liver. European radiology 25:1087–1096.CrossRefGoogle Scholar
  31. 31.
    Suh YJ, Kim MJ, Choi JY, et al (2012) Preoperative prediction of the microvascular invasion of hepatocellular carcinoma with diffusion-weighted imaging. Liver Transplantation 18:1171–1178.CrossRefGoogle Scholar
  32. 32.
    Xu P, Zeng M, Liu K, et al (2014) Microvascular invasion in small hepatocellular carcinoma: is it predictable with preoperative diffusion-weighted imaging. Journal of Gastroenterology and Hepatology 29:330–336.Google Scholar
  33. 33.
    Okamura S, Sumie S, Tonan T, et al (2016) Diffusion-weighted magnetic resonance imaging predicts malignant potential in small hepatocellular carcinoma. Digestive and Liver Disease 48:945–952.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Abd Alkhalik Basha
    • 1
    Email author
  • Rania Refaat
    • 2
  • Faten Fawzy Mohammad
    • 1
  • Mai E. M. Khamis
    • 1
  • Ahmed Mohamed El-Maghraby
    • 1
  • Ahmed A. El Sammak
    • 1
  • Rania M. Al-Molla
    • 1
  • Heba A. E. Mohamed
    • 1
  • Ahmad Abdullah Alnaggar
    • 1
  • Hanan Abdelhameed Hassan
    • 1
  • Taghreed M. Azmy
    • 1
  • Ahmed M. Alaa Eldin
    • 1
  • Mostafa Mohamad Assy
    • 1
  • Mohamad Zakarya AlAzzazy
    • 1
  • Khaled Mohamed Altaher
    • 1
  • Heba Fathy Tantawy
    • 1
  • Sameh Saber
    • 1
  • Mohamed I. Amin
    • 1
  • Ahmed Mohamed Alsowey
    • 1
  • Mohamed Hesham Saleh Radwan
    • 1
  • Heba F. Taha
    • 3
  • Talaat Fathy
    • 4
  • Amr Shaaban Hanafy
    • 5
  • Eman H. Abdelbary
    • 6
  1. 1.Department of RadiodiagnosisZagazig UniversityZagazigEgypt
  2. 2.Department of RadiodiagnosisAin Shams UniversityCairoEgypt
  3. 3.Department of Medical OncologyZagazig UniversityZagazigEgypt
  4. 4.Department of Tropical MedicineZagazig UniversityZagazigEgypt
  5. 5.Department of Internal MEDICINE, Hepatology DivisionZagazig UniversityZagazigEgypt
  6. 6.Department of PathologyZagazig UniversityZagazigEgypt

Personalised recommendations