Abdominal Radiology

, Volume 43, Issue 7, pp 1670–1681 | Cite as

Differentiating focal nodular hyperplasia from hepatocellular adenoma: Is hepatobiliary phase MRI (HBP-MRI) using linear gadolinium chelates always useful?

  • Marion RouxEmail author
  • Frederic Pigneur
  • Laurence Baranes
  • Julien Calderaro
  • Mélanie Chiaradia
  • Thomas Decaens
  • Sandrine Kastahian
  • Anaïs Charles-Nelson
  • Lambros Tselikas
  • Charlotte Costentin
  • Alexis Laurent
  • Daniel Azoulay
  • Ariane Mallat
  • Alain Rahmouni
  • Alain Luciani



To assess the value of Hepatobiliary phase MRI (HPB-MRI) to differentiate FNH and HCA, and evaluate its impact on diagnostic accuracy, diagnostic confidence, inter-observer variability, and patient clinical management.


Forty-nine patients referred for Gd-BOPTA-enhanced MRI were retrospectively included in this IRB-approved study, with a total of 119 lesions—90 FNH and 29 HCA. Two observers separately assessed in 2 distinct randomized reading sessions the performance of MRI with (HBP-MRI) or without (conventional MRI) the use of HBP images. Each lesion was ranked with a 5-point scale (from 1 Typical FNH to 5 Certainly not a FNH). Sensitivity, specificity, overall accuracy, and inter-observer agreement for the differentiation of FNH from HCA were calculated and compared between conventional and HBP-MRI.


Both sensitivity (respective values of 38.9% and 97.8%), overall accuracy (respective values of 53.8% and 98.3%), and inter-observer agreement (respective values of Kappa 0.56 and 0.88) were significantly higher using HBP-MRI than with conventional MRI, with unchanged specificity (100%). The sensitivity of conventional MRI for the diagnosis of FNH was significantly lower in lesions ≤ 3 cm (20% vs. 88%). Overall, HBP could have changed lesion management in 59/119 cases (49.5%), including 53 FNH and 6 HCA with no impact in 60/119 lesions (50.5%) including all 35 lesions classified as scores 1 and 2 for the diagnosis of FNH.


The clinical impact of HBP-MRI is mostly important for smaller than 3-cm FNH, and more limited in larger FNH lesions as well as for HCA diagnosis for which conventional MRI is already accurate. The use of extracellular contrast agents upfront could limit the required use of linear HBP contrast agents for benign hepatocellular lesion characterization. On HBP, all FNH appeared hypointense compared to adjacent liver while close to 97% of HCA appeared hypointense.


Focal nodular hyperplasia Hepatocellular adenoma Benign Hepatocellular tumors Hepatobiliary phase MRI Gd-BOPTA 



Focal nodular hyperplasia


Hepatocellular adenoma


Magnetic resonance imaging


Organic anion transporting polypeptide


Multidrug resistance-associated protein 2


Hepatobiliary phase

T1 or T2-WI

T1 or T2-weighted imaging


Volumetric interpolated breath-hold examination


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Nault JC, Bioulac-Sage P, Zucman-Rossi J (2013) Hepatocellular benign tumors-from molecular classification to personalized clinical care. Gastroenterology 144:888–902CrossRefPubMedGoogle Scholar
  2. 2.
    Charny CK, Jarnagin WR, Schwartz LH, et al. (2001) Management of 155 patients with benign liver tumours. Br J Surg 88:808–813CrossRefPubMedGoogle Scholar
  3. 3.
    Shanbhogue AK, Prasad SR, Takahashi N, Vikram R, Sahani DV (2011) Recent advances in cytogenetics and molecular biology of adult hepatocellular tumors: implications for imaging and management. Radiology 258:673–693CrossRefPubMedGoogle Scholar
  4. 4.
    Cherqui D, Rahmouni A, Charlotte F, et al. (1995) Management of focal nodular hyperplasia and hepatocellular adenoma in young women: a series of 41 patients with clinical, radiological, and pathological correlations. Hepatology 22:1674–1681CrossRefPubMedGoogle Scholar
  5. 5.
    Ferlicot S, Kobeiter H, Tran Van Nhieu J, et al. (2004) MRI of atypical focal nodular hyperplasia of the liver: radiology-pathology correlation. AJR Am J Roentgenol 182:1227–1231CrossRefPubMedGoogle Scholar
  6. 6.
    Ronot M, Vilgrain V (2014) Imaging of benign hepatocellular lesions: current concepts and recent updates. Clin Res Hepatol Gastroenterol 38:681–688CrossRefPubMedGoogle Scholar
  7. 7.
    Ba-Ssalamah A, Schima W, Schmook MT, et al. (2002) Atypical focal nodular hyperplasia of the liver: imaging features of nonspecific and liver-specific MR contrast agents. AJR Am J Roentgenol 179:1447–1456CrossRefPubMedGoogle Scholar
  8. 8.
    Neri E, Bali MA, Ba-Ssalamah A, et al. (2016) ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol 26:921–931CrossRefPubMedGoogle Scholar
  9. 9.
    Roche V, Pigneur F, Tselikas L, et al. (2015) Differentiation of focal nodular hyperplasia from hepatocellular adenomas with low-mechanical-index contrast-enhanced sonography (CEUS): effect of size on diagnostic confidence. Eur Radiol 25:186–195CrossRefPubMedGoogle Scholar
  10. 10.
    Millet P, Moulin M, Stieger B, Daali Y, Pastor CM (2011) How organic anions accumulate in hepatocytes lacking Mrp2: evidence in rat liver. J Pharmacol Exp Ther 336:624–632CrossRefPubMedGoogle Scholar
  11. 11.
    Pastor CM (2010) Gadoxetic acid-enhanced hepatobiliary phase MR imaging: cellular insight. Radiology 257:589CrossRefPubMedGoogle Scholar
  12. 12.
    Pastor CM, Planchamp C, Pochon S, et al. (2003) Kinetics of gadobenate dimeglumine in isolated perfused rat liver: MR imaging evaluation. Radiology 229:119–125CrossRefPubMedGoogle Scholar
  13. 13.
    Planchamp C, Hadengue A, Stieger B, et al. (2007) Function of both sinusoidal and canalicular transporters controls the concentration of organic anions within hepatocytes. Mol Pharmacol 71:1089–1097CrossRefPubMedGoogle Scholar
  14. 14.
    de Haen C, Lorusso V, Luzzani F, Tirone P (1995) Hepatic transport of the magnetic resonance imaging contrast agent gadobenate dimeglumine in the rat. Acad Radiol 2:232–238CrossRefPubMedGoogle Scholar
  15. 15.
    Spinazzi A, Lorusso V, Pirovano G, Kirchin M (1999) Safety, tolerance, biodistribution, and MR imaging enhancement of the liver with gadobenate dimeglumine: results of clinical pharmacologic and pilot imaging studies in nonpatient and patient volunteers. Acad Radiol 6:282–291CrossRefPubMedGoogle Scholar
  16. 16.
    Frydrychowicz A, Lubner MG, Brown JJ, et al. (2012) Hepatobiliary MR imaging with gadolinium-based contrast agents. J Magn Reson Imaging 35:492–511CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brismar TB, Dahlstrom N, Edsborg N, et al. (2009) Liver vessel enhancement by Gd-BOPTA and Gd-EOB-DTPA: a comparison in healthy volunteers. Acta Radiol 50:709–715CrossRefPubMedGoogle Scholar
  18. 18.
    Dahlqvist Leinhard O, Dahlstrom N, Kihlberg J, et al. (2012) Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: a pilot study. Eur Radiol 22:642–653CrossRefPubMedGoogle Scholar
  19. 19.
    Runge VM (1998) A comparison of two MR hepatobiliary gadolinium chelates: Gd-BOPTA and Gd-EOB-DTPA. J Comput Assist Tomogr 22:643–650CrossRefPubMedGoogle Scholar
  20. 20.
    Bieze M, van den Esschert JW, Nio CY, et al. (2012) Diagnostic accuracy of MRI in differentiating hepatocellular adenoma from focal nodular hyperplasia: prospective study of the additional value of gadoxetate disodium. AJR Am J Roentgenol 199:26–34CrossRefPubMedGoogle Scholar
  21. 21.
    Grazioli L, Morana G, Federle MP, et al. (2001) Focal nodular hyperplasia: morphologic and functional information from MR imaging with gadobenate dimeglumine. Radiology 221:731–739CrossRefPubMedGoogle Scholar
  22. 22.
    Grazioli L, Morana G, Kirchin MA, Schneider G (2005) Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: prospective study. Radiology 236:166–177CrossRefPubMedGoogle Scholar
  23. 23.
    McInnes MD, Hibbert RM, Inacio JR, Schieda N (2015) Focal nodular hyperplasia and hepatocellular adenoma: accuracy of gadoxetic acid-enhanced MR imaging-A systematic review. Radiology 277:927CrossRefPubMedGoogle Scholar
  24. 24.
    Pirovano G, Vanzulli A, Marti-Bonmati L, et al. (2000) Evaluation of the accuracy of gadobenate dimeglumine-enhanced MR imaging in the detection and characterization of focal liver lesions. AJR Am J Roentgenol 175:1111–1120CrossRefPubMedGoogle Scholar
  25. 25.
    Purysko AS, Remer EM, Coppa CP, et al. (2012) Characteristics and distinguishing features of hepatocellular adenoma and focal nodular hyperplasia on gadoxetate disodium-enhanced MRI. AJR Am J Roentgenol 198:115–123CrossRefPubMedGoogle Scholar
  26. 26.
    Agarwal S, Fuentes-Orrego JM, Arnason T, et al. (2014) Inflammatory hepatocellular adenomas can mimic focal nodular hyperplasia on gadoxetic acid-enhanced MRI. AJR Am J Roentgenol 203:W408–W414CrossRefPubMedGoogle Scholar
  27. 27.
    Grazioli L, Bondioni MP, Haradome H, et al. (2012) Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 262:520–529CrossRefPubMedGoogle Scholar
  28. 28.
    Grieser C, Steffen IG, Kramme IB, et al. (2014) Gadoxetic acid enhanced MRI for differentiation of FNH and HCA: a single centre experience. Eur Radiol. CrossRefPubMedGoogle Scholar
  29. 29.
    Suh CH, Kim KW, Kim GY, et al. (2015) The diagnostic value of Gd-EOB-DTPA-MRI for the diagnosis of focal nodular hyperplasia: a systematic review and meta-analysis. Eur Radiol 25:950–960CrossRefPubMedGoogle Scholar
  30. 30.
    Zech CJ, Grazioli L, Breuer J, Reiser MF, Schoenberg SO (2008) Diagnostic performance and description of morphological features of focal nodular hyperplasia in Gd-EOB-DTPA-enhanced liver magnetic resonance imaging: results of a multicenter trial. Invest Radiol 43:504–511CrossRefPubMedGoogle Scholar
  31. 31.
    Quaia E (2012) Solid focal liver lesions indeterminate by contrast-enhanced CT or MR imaging: the added diagnostic value of contrast-enhanced ultrasound. Abdom Imaging 37:580–590CrossRefPubMedGoogle Scholar
  32. 32.
    Robert P, Violas X, Grand S, et al. (2016) Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Invest Radiol 51:73–82CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Frenzel T, Apte C, Jost G, et al. (2017) Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Invest Radiol. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMedGoogle Scholar
  35. 35.
    Radbruch A, Weberling LD, Kieslich PJ, et al. (2015) Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 275:783–791CrossRefPubMedGoogle Scholar
  36. 36.
    Runge VM (2017) Critical questions regarding gadolinium deposition in the brain and body after injections of the gadolinium-based contrast agents, safety, and clinical recommendations in consideration of the EMA’s pharmacovigilance and risk assessment committee recommendation for suspension of the marketing authorizations for 4 linear agents. Invest Radiol 52:317–323CrossRefPubMedGoogle Scholar
  37. 37.
    Roux M, Pigneur F, Calderaro J, et al. (2015) Differentiation of focal nodular hyperplasia from hepatocellular adenoma: role of the quantitative analysis of gadobenate dimeglumine-enhanced hepatobiliary phase MRI. J Magn Reson Imaging. CrossRefPubMedGoogle Scholar
  38. 38.
    Bioulac-Sage P, Laumonier H, Couchy G, et al. (2009) Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience. Hepatology 50:481–489CrossRefPubMedGoogle Scholar
  39. 39.
    Zucman-Rossi J, Jeannot E, Nhieu JT, et al. (2006) Genotype-phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 43:515–524CrossRefPubMedGoogle Scholar
  40. 40.
    Bioulac-Sage P, Balabaud C, Zucman-Rossi J (2010) Subtype classification of hepatocellular adenoma. Dig Surg 27:39–45CrossRefPubMedGoogle Scholar
  41. 41.
    Bioulac-Sage P, Blanc JF, Rebouissou S, Balabaud C, Zucman-Rossi J (2007) Genotype phenotype classification of hepatocellular adenoma. World J Gastroenterol 13:2649–2654CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cristiano A, Dietrich A, Spina JC, Ardiles V, de Santibanes E (2014) Focal nodular hyperplasia and hepatic adenoma: current diagnosis and management. Updates Surg 66:9–21CrossRefPubMedGoogle Scholar
  43. 43.
    van den Esschert JW, van Gulik TM, Phoa SS (2010) Imaging modalities for focal nodular hyperplasia and hepatocellular adenoma. Dig Surg 27:46–55CrossRefPubMedGoogle Scholar
  44. 44.
    Mathieu D, Rahmouni A, Anglade MC, et al. (1991) Focal nodular hyperplasia of the liver: assessment with contrast-enhanced TurboFLASH MR imaging. Radiology 180:25–30CrossRefPubMedGoogle Scholar
  45. 45.
    Vilgrain V, Flejou JF, Arrive L, et al. (1992) Focal nodular hyperplasia of the liver: MR imaging and pathologic correlation in 37 patients. Radiology 184:699–703CrossRefPubMedGoogle Scholar
  46. 46.
    Chung KY, Mayo-Smith WW, Saini S, et al. (1995) Hepatocellular adenoma: MR imaging features with pathologic correlation. AJR Am J Roentgenol 165:303–308CrossRefPubMedGoogle Scholar
  47. 47.
    Laumonier H, Bioulac-Sage P, Laurent C, et al. (2008) Hepatocellular adenomas: magnetic resonance imaging features as a function of molecular pathological classification. Hepatology 48:808–818CrossRefPubMedGoogle Scholar
  48. 48.
    Merkle EM, Zech CJ, Bartolozzi C, et al. (2016) Consensus report from the 7th international forum for liver magnetic resonance imaging. Eur Radiol 26:674–682CrossRefPubMedGoogle Scholar
  49. 49.
    Kim HJ, Kim BS, Kim MJ, et al. (2013) Enhancement of the liver and pancreas in the hepatic arterial dominant phase: comparison of hepatocyte-specific MRI contrast agents, gadoxetic acid and gadobenate dimeglumine, on 3 and 1.5 Tesla MRI in the same patient. J Magn Reson Imaging 37:903–908CrossRefPubMedGoogle Scholar
  50. 50.
    Kundel HL, Polansky M (2003) Measurement of observer agreement. Radiology 228:303–308CrossRefPubMedGoogle Scholar
  51. 51.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefPubMedGoogle Scholar
  52. 52.
    Thomeer MG, Willemssen FE, Biermann KK, et al. (2014) MRI features of inflammatory hepatocellular adenomas on hepatocyte phase imaging with liver-specific contrast agents. J Magn Reson Imaging 39:1259–1264CrossRefPubMedGoogle Scholar
  53. 53.
    Tse JR, Naini BV, Lu DS, Raman SS (2016) Qualitative and quantitative gadoxetic acid-enhanced MR imaging helps subtype hepatocellular adenomas. Radiology 279:118–127CrossRefPubMedGoogle Scholar
  54. 54.
    Gupta RT, Iseman CM, Leyendecker JR, et al. (2012) Diagnosis of focal nodular hyperplasia with MRI: multicenter retrospective study comparing gadobenate dimeglumine to gadoxetate disodium. AJR Am J Roentgenol 199:35–43CrossRefPubMedGoogle Scholar
  55. 55.
    Davenport MS, Caoili EM, Kaza RK, Hussain HK (2014) Matched within-patient cohort study of transient arterial phase respiratory motion-related artifact in MR imaging of the liver: gadoxetate disodium versus gadobenate dimeglumine. Radiology 272:123–131CrossRefPubMedGoogle Scholar
  56. 56.
    Davenport MS, Viglianti BL, Al-Hawary MM, et al. (2013) Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology 266:452–461CrossRefPubMedGoogle Scholar
  57. 57.
    Luciani A, Kobeiter H, Maison P, et al. (2002) Focal nodular hyperplasia of the liver in men: is presentation the same in men and women? Gut 50:877–880CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Grazioli L, Morana G, Caudana R, et al. (2000) Hepatocellular carcinoma: correlation between gadobenate dimeglumine-enhanced MRI and pathologic findings. Invest Radiol 35:25–34CrossRefPubMedGoogle Scholar
  59. 59.
    Hwang HS, Kim SH, Jeon TY, et al. (2009) Hypointense hepatic lesions depicted on gadobenate dimeglumine-enhanced three-hour delayed hepatobiliary-phase MR imaging: differentiation between benignancy and malignancy. Korean J Radiol 10:294–302CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Yoneda N, Matsui O, Kitao A, et al. (2012) Beta-catenin-activated hepatocellular adenoma showing hyperintensity on hepatobiliary-phase gadoxetic-enhanced magnetic resonance imaging and overexpression of OATP8. Jpn J Radiol 30:777–782CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Marion Roux
    • 1
    Email author
  • Frederic Pigneur
    • 2
  • Laurence Baranes
    • 2
    • 3
  • Julien Calderaro
    • 4
    • 3
  • Mélanie Chiaradia
    • 2
    • 3
  • Thomas Decaens
    • 5
    • 3
  • Sandrine Kastahian
    • 6
  • Anaïs Charles-Nelson
    • 6
  • Lambros Tselikas
    • 2
  • Charlotte Costentin
    • 5
    • 3
  • Alexis Laurent
    • 7
    • 3
  • Daniel Azoulay
    • 7
    • 3
  • Ariane Mallat
    • 5
    • 3
  • Alain Rahmouni
    • 2
    • 3
  • Alain Luciani
    • 2
    • 3
    • 8
  1. 1.Service de Radiodiagnostic et Radiologie interventionnelleCHUVLausanneSwitzerland
  2. 2.Groupe Henri Mondor Albert Chenevier, Imagerie MedicaleAP-HPCreteilFrance
  3. 3.Faculte de Medecine de CreteilUniversite Paris Est CreteilCreteilFrance
  4. 4.Groupe Henri Mondor Albert Chenevier, PathologyAP-HPCreteilFrance
  5. 5.Groupe Henri Mondor Albert Chenevier, Hepato-Gastroenterology DepartmentAP-HPCreteilFrance
  6. 6.Groupe Henri Mondor Albert Chenevier, Unite de Recherche Clinique (URC)AP-HPCreteilFrance
  7. 7.Groupe Henri Mondor Albert Chenevier, Liver SurgeryAP-HPCreteilFrance
  8. 8.INSERM Unite U 955, Equipe 18CreteilFrance

Personalised recommendations