Skip to main content
Log in

The role of imaging in the clinical practice of radiation oncology for pancreatic cancer

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Advances in technology have enabled the delivery of high doses of radiation therapy for pancreatic ductal adenocarcinoma (PDAC) with low rates of toxicity. Although the role of radiation for pancreatic cancer continues to evolve, encouraging results with newer techniques indicate that radiation may benefit selected patient populations. Imaging has been central to the modern successes of radiation therapy for PDAC. Here, we review the role of diagnostic imaging, imaging-based planning, and image guidance in radiation oncology practice for PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rahib L, Smith BD, Aizenberg R, et al. (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921

    Article  CAS  PubMed  Google Scholar 

  2. Iacobuzio-Donahue CA, Fu B, Yachida S, et al. (2009) DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol 27(11):1806–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Attiyeh MA, Fernandez-Del Castillo C, Al Efishat M, Eaton AA, Gonen M, Batts R, et al. (2016) Development and validation of a multi-institutional preoperative nomogram for predicting grade of dysplasia in intraductal papillary mucinous neoplasms (IPMNs) of the pancreas: a report from the pancreatic surgery consortium. Ann Surg

  4. Hsu CC, Herman JM, Corsini MM, et al. (2010) Adjuvant chemoradiation for pancreatic adenocarcinoma: the Johns Hopkins Hospital-Mayo Clinic collaborative study. Ann Surg Oncol 17(4):981–990

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iott M, Neben-Wittich M, Quevedo JF, Miller RC (2010) Adjuvant chemoradiotherapy for resected pancreas cancer. World J Gastrointest Surg 2(11):373–380

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rwigema JC, Heron DE, Parikh SD, et al. (2012) Adjuvant stereotactic body radiotherapy for resected pancreatic adenocarcinoma with close or positive margins. J Gastrointest Cancer 43(1):70–76

    Article  PubMed  Google Scholar 

  7. Mornex F, Girard N, Delpero JR, Partensky C (2005) Radiochemotherapy in the management of pancreatic cancer–part I: neoadjuvant treatment. Semin Radiat Oncol 15(4):226–234

    Article  PubMed  Google Scholar 

  8. Wei Q, Yu W, Rosati LM, Herman JM (2015) Advances of stereotactic body radiotherapy in pancreatic cancer. Chin J Cancer Res 27(4):349–357

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Katz MH, Crane CH, Varadhachary G (2014) Management of borderline resectable pancreatic cancer. Semin Radiat Oncol 24(2):105–112

    Article  PubMed  Google Scholar 

  10. Hammel P, Huguet F, van Laethem JL, et al. (2016) Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: the LAP07 randomized clinical trial. JAMA 315(17):1844–1853

    Article  CAS  PubMed  Google Scholar 

  11. Loehrer PJ Sr, Feng Y, Cardenes H, et al. (2011) Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol 29(31):4105–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hammel P, Huguet F, Laethem JL, Goldstein D, Glimelius B, Artru P, et al. (2013) Comparison of chemoradiotherapy and chemotherapy in patients with a locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: final results of the international phase III LAP 07 study. J Clin Oncol suppl; abstr LBA4003

  13. Moningi S, Dholakia AS, Raman SP, et al. (2015) The role of stereotactic body radiation therapy for pancreatic cancer: a single-institution experience. Ann Surg Oncol 22(7):2352–2358

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krishnan S, Chadha AS, Suh Y, et al. (2016) Focal radiation therapy dose escalation improves overall survival in locally advanced pancreatic cancer patients receiving induction chemotherapy and consolidative chemoradiation. Int J Radiat Oncol Biol Phys 94(4):755–765

    Article  PubMed  Google Scholar 

  15. Herman JM, Chang DT, Goodman KA, et al. (2015) Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 121(7):1128–1137

    Article  CAS  PubMed  Google Scholar 

  16. Herman JM, Hoffman JP, Thayer SP, Wolff RA (2015) Management of the primary tumor and limited metastases in patients with metastatic pancreatic cancer. J Natl Compr Canc Netw 13(5):e29–36

    Article  PubMed  Google Scholar 

  17. Callery MP, Chang KJ, Fishman EK, et al. (2009) Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann Surg Oncol 16(7):1727–1733

    Article  PubMed  Google Scholar 

  18. Gupta S, Wagner-Bartak N, Jensen CT, et al. (2016) Dual-energy CT of pancreatic adenocarcinoma: reproducibility of primary tumor measurements and assessment of tumor conspicuity and margin sharpness. Abdom Radiol (NY) 41(7):1317–1324

    Article  Google Scholar 

  19. Fulwadhva UP, Wortman JR, Sodickson AD (2016) Use of dual-energy CT and iodine maps in evaluation of bowel disease. Radiographics 36(2):393–406

    Article  PubMed  Google Scholar 

  20. Vachiranubhap B, Kim YH, Balci NC, Semelka RC (2009) Magnetic resonance imaging of adenocarcinoma of the pancreas. Top Magn Reson Imaging 20(1):3–9

    Article  PubMed  Google Scholar 

  21. Park HS, Lee JM, Choi HK, et al. (2009) Preoperative evaluation of pancreatic cancer: comparison of gadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. J Magn Reson Imaging 30(3):586–595

    Article  PubMed  Google Scholar 

  22. Kim JH, Park SH, Yu ES, et al. (2010) Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology 257(1):87–96

    Article  PubMed  Google Scholar 

  23. Farma JM, Santillan AA, Melis M, et al. (2008) PET/CT fusion scan enhances CT staging in patients with pancreatic neoplasms. Ann Surg Oncol 15(9):2465–2471

    Article  PubMed  Google Scholar 

  24. Rijkers AP, Valkema R, Duivenvoorden HJ, van Eijck CH (2014) Usefulness of F-18-fluorodeoxyglucose positron emission tomography to confirm suspected pancreatic cancer: a meta-analysis. Eur J Surg Oncol 40(7):794–804

    Article  CAS  PubMed  Google Scholar 

  25. Chirindel A, Alluri KC, Chaudhry MA, et al. (2015) Prognostic Value of FDG PET/CT-Derived Parameters in Pancreatic Adenocarcinoma at Initial PET/CT Staging. AJR Am J Roentgenol 204(5):1093–1099

    Article  PubMed  Google Scholar 

  26. Dholakia AS, Chaudhry M, Leal JP, et al. (2014) Baseline metabolic tumor volume and total lesion glycolysis are associated with survival outcomes in patients with locally advanced pancreatic cancer receiving stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 89(3):539–546

    Article  PubMed  PubMed Central  Google Scholar 

  27. Evans DB, Varadhachary GR, Crane CH, et al. (2008) Preoperative gemcitabine-based chemoradiation for patients with resectable adenocarcinoma of the pancreatic head. J Clin Oncol 26(21):3496–3502

    Article  CAS  PubMed  Google Scholar 

  28. Varadhachary GR, Wolff RA, Crane CH, et al. (2008) Preoperative gemcitabine and cisplatin followed by gemcitabine-based chemoradiation for resectable adenocarcinoma of the pancreatic head. J Clin Oncol 26(21):3487–3495

    Article  CAS  PubMed  Google Scholar 

  29. Katz MH, Ou FS, Herman JM, et al. (2017) Alliance for Clinical Trials in Oncology (ALLIANCE) Trial A021501: preoperative extended chemotherapy vs. chemotherapy plus hypofractionated radiation therapy for borderline resectable adenocarcinoma of the head of the pancreas. BMC Cancer (accepted)

  30. Crane CH, Koay EJ (2016) Solutions that enable ablative radiotherapy for large liver tumors: Fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer 122(13):1974–1986

    Article  PubMed  PubMed Central  Google Scholar 

  31. Elhammali A, Patel M, Weinberg B, et al. (2015) Late gastrointestinal tissue effects after hypofractionated radiation therapy of the pancreas. Radiat Oncol 10:186

    Article  PubMed  PubMed Central  Google Scholar 

  32. Murimwa G, Mellon EA, Frankes JM, et al. (2017) Impact of duodenal invasion on outcomes in patients with pancreatic cancer treated with stereotactic body radiotherapy. J Clin Oncol (no. 4 suppl):408

  33. Moffitt RA, Marayati R, Flate EL, et al. (2015) Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 47(10):1168–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Godfrey DJ, Patel BN, Adamson JD, et al. (2017) Triphasic contrast enhanced CT simulation with bolus tracking for pancreas SBRT target delineation. Pract Radiat Oncol. https://doi.org/10.1016/j.prro.2017.04.008

    PubMed  Google Scholar 

  35. Paulson ES, Erickson B, Schultz C, Allen Li X (2015) Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning. Med Phys 42(1):28–39

    Article  PubMed  Google Scholar 

  36. Dirix P, Haustermans K, Vandecaveye V (2014) The value of magnetic resonance imaging for radiotherapy planning. Semin Radiat Oncol 24(3):151–159

    Article  PubMed  Google Scholar 

  37. Arivarasan I, Anuradha C, Subramanian S, Anantharaman A, Ramasubramanian V (2017) Magnetic resonance image guidance in external beam radiation therapy planning and delivery. Jpn J Radiol. https://doi.org/10.1007/s11604-017-0656-5

    PubMed  Google Scholar 

  38. Panych LP, Madore B (2017) The physics of MRI safety. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25761

    PubMed  Google Scholar 

  39. Walker A, Liney G, Metcalfe P, Holloway L (2014) MRI distortion: considerations for MRI based radiotherapy treatment planning. Australas Phys Eng Sci Med 37(1):103–113

    Article  PubMed  Google Scholar 

  40. Crijns SP, Bakker CJ, Seevinck PR, et al. (2012) Towards inherently distortion-free MR images for image-guided radiotherapy on an MRI accelerator. Phys Med Biol 57(5):1349–1358

    Article  CAS  PubMed  Google Scholar 

  41. Mizowaki T, Nagata Y, Okajima K, et al. (2000) Reproducibility of geometric distortion in magnetic resonance imaging based on phantom studies. Radiother Oncol 57(2):237–242

    Article  CAS  PubMed  Google Scholar 

  42. Basran PS, Woo MK (2008) An analysis of tolerance levels in IMRT quality assurance procedures. Med Phys 35(6):2300–2307

    Article  PubMed  Google Scholar 

  43. van der Horst A, Wognum S, Davila Fajardo R, et al. (2013) Interfractional position variation of pancreatic tumors quantified using intratumoral fiducial markers and daily cone beam computed tomography. Int J Radiat Oncol Biol Phys 87(1):202–208

    Article  PubMed  Google Scholar 

  44. Lens E, van der Horst A, Kroon PS, et al. (2014) Differences in respiratory-induced pancreatic tumor motion between 4D treatment planning CT and daily cone beam CT, measured using intratumoral fiducials. Acta Oncol 53(9):1257–1264

    Article  PubMed  Google Scholar 

  45. Papalazarou C, Klop GJ, Milder MTW, et al. (2017) CyberKnife with integrated CT-on-rails: system description and first clinical application for pancreas SBRT. Med Phys 44:4816

    Article  PubMed  Google Scholar 

  46. Lagendijk JJ, Raaymakers BW, van Vulpen M (2014) The magnetic resonance imaging-linac system. Semin Radiat Oncol 24(3):207–209

    Article  PubMed  Google Scholar 

  47. Bissonnette JP, Balter PA, Dong L, et al. (2012) Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys 39(4):1946–1963

    Article  PubMed  Google Scholar 

  48. Jaffray DA (2012) Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 9(12):688–699

    Article  CAS  PubMed  Google Scholar 

  49. Pereira GC, Traughber M, Muzic RF Jr (2014) The role of imaging in radiation therapy planning: past, present, and future. Biomed Res Int 2014:231090

    PubMed  PubMed Central  Google Scholar 

  50. Kupelian P, Sonke JJ (2014) Magnetic resonance-guided adaptive radiotherapy: a solution to the future. Semin Radiat Oncol 24(3):227–232

    Article  PubMed  Google Scholar 

  51. Goddu S, Green OP, Mutic S (2012) WE-G-BRB-08: TG-51 calibration of first commercial MRI-guided IMRT system in the presence of 0.35 Tesla magnetic field. Med Phys 39(6Part28):3968

    Article  CAS  PubMed  Google Scholar 

  52. Jaffray D, Mutic S, Fallone B, Raaymakers B (2013) MO-A-WAB-01: MRI-guided radiation therapy. Med Phys 40(6Part23):390

    Article  Google Scholar 

  53. Mutic S, Dempsey JF (2014) The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 24(3):196–199

    Article  PubMed  Google Scholar 

  54. Tzeng CW, Fleming JB, Lee JE, et al. (2012) Yield of clinical and radiographic surveillance in patients with resected pancreatic adenocarcinoma following multimodal therapy. HPB (Oxford) 14(6):365–372

    Article  Google Scholar 

  55. St Aubin J, Steciw S, Fallone BG (2010) The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide. Med Phys 37(2):466–476

    Article  CAS  PubMed  Google Scholar 

  56. Fallone BG (2014) The rotating biplanar linac-magnetic resonance imaging system. Semin Radiat Oncol 24(3):200–202

    Article  PubMed  Google Scholar 

  57. Keyvanloo A, Burke B, St Aubin J, et al. (2016) Minimal skin dose increase in longitudinal rotating biplanar linac-MR systems: examination of radiation energy and flattening filter design. Phys Med Biol 61(9):3527–3539

    Article  CAS  PubMed  Google Scholar 

  58. Keall PJ, Barton M, Crozier S, Australian Mri-Linac Program icfIIICCCLHSUUoNQSWS, Wollongong (2014) The Australian magnetic resonance imaging-linac program. Semin Radiat Oncol 24(3):203–206

    Article  PubMed  Google Scholar 

  59. Whelan B, Gierman S, Holloway L, et al. (2016) A novel electron accelerator for MRI-Linac radiotherapy. Med Phys 43(3):1285–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aguilera KY, Rivera LB, Hur H, et al. (2014) Collagen signaling enhances tumor progression after anti-VEGF therapy in a murine model of pancreatic ductal adenocarcinoma. Cancer Res 74(4):1032–1044

    Article  CAS  PubMed  Google Scholar 

  61. Bol GH, Hissoiny S, Lagendijk JJ, Raaymakers BW (2012) Fast online Monte Carlo-based IMRT planning for the MRI linear accelerator. Phys Med Biol 57(5):1375–1385

    Article  CAS  PubMed  Google Scholar 

  62. Raaymakers BW, Lagendijk JJ, Overweg J, et al. (2009) Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Phys Med Biol 54(12):N229–237

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene J. Koay.

Ethics declarations

Funding

This study was funded by the National Institutes of Health (NIH U54CA210181-01, U54CA143837 and U01CA196403), the Pancreatic Cancer Action Network (14-20-25-KOAY), and the Radiological Society of North America (RSD1429). We gratefully acknowledge partial support from the Andrew Sabin Family Fellowship, Center for Radiation Oncology Research, the Sheikh Ahmed Center for Pancreatic Cancer Research, institutional funds from The University of Texas MD Anderson Cancer Center, GE Healthcare, Philips Healthcare, and Cancer Center Support (Core) Grant CA016672 from the National Cancer Institute to MD Anderson.

Conflict of interest

Eugene Koay has received research grants from Philips Healthcare and GE. Eugene Koay has received a speaker honorarium from Philips Healthcare. The authors have no relevant conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koay, E.J., Hall, W., Park, P.C. et al. The role of imaging in the clinical practice of radiation oncology for pancreatic cancer. Abdom Radiol 43, 393–403 (2018). https://doi.org/10.1007/s00261-017-1373-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1373-3

Keywords

Navigation