Abdominal Radiology

, Volume 43, Issue 7, pp 1546–1551 | Cite as

Ultrasound or MR elastography of liver: which one shall I use?

  • Meng Yin
  • Sudhakar K. Venkatesh
Invited article


Liver stiffness is now a well-established noninvasive biomarker for assessing fibrosis in chronic liver disease. MRI-based and ultrasound-based dynamic elastography techniques have been introduced for assessment of liver stiffness and useful in clinical staging of hepatic fibrosis. Several different elastography techniques are now available with each method having inherent strengths and limitations. The published literature generally indicates that MR elastography has a higher diagnostic performance and fewer technical failures than ultrasound-based elastography techniques in assessing hepatic fibrosis. There is also significant potential to further develop elastography techniques to implement multiparametric methods that have promise for distinguishing between processes such as inflammation, fibrosis, venous congestion, and portal hypertension that can result in increased liver stiffness. In this commentary, we compare MR and ultrasound elastography methods and their utility in clinical practice.


Elastography Ultrasound MRI Shear wave Liver stiffness Hepatic fibrosis 



This work has been supported by NIH grant EB017197.

Compliance with ethical standards

Conflict of interest

M.Y. has received research grants from NIH (NIBIB: EB017197). She receives royalties from and holds stock in Resoundant. She has intellectual property rights and a financial interest in MR elastography technology. S.K.V. declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with animals and human participants performed by any of the authors.


  1. 1.
    Regev A, Berho M, Jeffers LJ, et al. (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97(10):2614–2618CrossRefPubMedGoogle Scholar
  2. 2.
    The French METAVIR Cooperative Study Group (1994) Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology 20(1):15–20CrossRefGoogle Scholar
  3. 3.
    Jung ES, Lee K, Yu E, et al. (2016) Interobserver agreement on pathologic features of liver biopsy tissue in patients with nonalcoholic fatty liver disease. J Pathol Transl Med 50(3):190–196CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    European Association for Study of Liver (2015) EASL-ALEH clinical practice guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 63(1):237–264CrossRefGoogle Scholar
  5. 5.
    Cosgrove D, Piscaglia F, Bamber J, et al. (2013) EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: clinical applications. Ultraschall Med 34(3):238–253CrossRefPubMedGoogle Scholar
  6. 6.
    Ferraioli G, Filice C, Castera L, et al. (2015) WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound Med Biol 41(5):1161–1179CrossRefPubMedGoogle Scholar
  7. 7.
    Shiha G, Ibrahim A, Helmy A, et al. (2017) Asian-Pacific Association for the Study of the Liver (APASL) consensus guidelines on invasive and non-invasive assessment of hepatic fibrosis: a 2016 update. Hepatol Int 11(1):1–30CrossRefPubMedGoogle Scholar
  8. 8.
    Friedrich-Rust M, Ong MF, Herrmann E, et al. (2007) Real-time elastography for noninvasive assessment of liver fibrosis in chronic viral hepatitis. AJR Am J Roentgenol 188(3):758–764CrossRefPubMedGoogle Scholar
  9. 9.
    Chung S, Breton E, Mannelli L, Axel L (2011) Liver stiffness assessment by tagged MRI of cardiac-induced liver motion. Magnetic Reson Med 65(4):949–955CrossRefGoogle Scholar
  10. 10.
    Barr RG, Ferraioli G, Palmeri ML, et al. (2015) Elastography assessment of liver fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 276(3):845–861CrossRefPubMedGoogle Scholar
  11. 11.
    Tang A, Cloutier G, Szeverenyi NM, Sirlin CB (2015) Ultrasound elastography and MR elastography for assessing liver fibrosis: Part 1, principles and techniques. AJR Am J Roentgenol 205(1):22–32CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tang A, Cloutier G, Szeverenyi NM, Sirlin CB (2015) Ultrasound elastography and MR elastography for assessing liver fibrosis: Part 2, diagnostic performance, confounders, and future directions. AJR Am J Roentgenol 205(1):33–40CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jiang T, Tian G, Zhao Q, et al. (2016) Diagnostic accuracy of 2D-shear wave elastography for liver fibrosis severity: a meta-analysis. PLoS One 11(6):e0157219CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yoon JH, Lee JM, Han JK, Choi BI (2014) Shear wave elastography for liver stiffness measurement in clinical sonographic examinations: evaluation of intraobserver reproducibility, technical failure, and unreliable stiffness measurements. J Ultrasound Med 33(3):437–447CrossRefPubMedGoogle Scholar
  15. 15.
    Ferraioli G, Tinelli C, Zicchetti M, et al. (2012) Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity. Eur J Radiol 81(11):3102–3106CrossRefPubMedGoogle Scholar
  16. 16.
    Deffieux T, Gennisson JL, Bousquet L, et al. (2015) Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography. J Hepatol 62(2):317–324CrossRefPubMedGoogle Scholar
  17. 17.
    Mariappan YK, Dzyubak B, Glaser KJ, et al. (2017) Application of modified spin-echo-based sequences for hepatic MR elastography: evaluation, comparison with the conventional gradient-echo sequence, and preliminary clinical experience. Radiology 282(2):390–398CrossRefPubMedGoogle Scholar
  18. 18.
    Garteiser P, Sahebjavaher RS, Ter Beek LC, et al. (2013) Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. NMR Biomed 26(10):1326–1335CrossRefPubMedGoogle Scholar
  19. 19.
    Park CC, Nguyen P, Hernandez C, et al. (2017) Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 152(3):598–607 (e2)CrossRefPubMedGoogle Scholar
  20. 20.
    Cui J, Heba E, Hernandez C, et al. (2016) Magnetic resonance elastography is superior to acoustic radiation force impulse for the diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: a prospective study. Hepatology 63(2):453–461CrossRefPubMedGoogle Scholar
  21. 21.
    Chen J, Yin M, Talwalkar JA, et al. (2017) Diagnostic performance of MR elastography and vibration-controlled transient elastography in the detection of hepatic fibrosis in patients with severe to morbid obesity. Radiology 283(2):418–428CrossRefPubMedGoogle Scholar
  22. 22.
    Venkatesh SK, Wang G, Teo LL, Ang BW (2014) Magnetic resonance elastography of liver in healthy Asians: normal liver stiffness quantification and reproducibility assessment. J Magn Reson Imaging 39(1):1–8CrossRefPubMedGoogle Scholar
  23. 23.
    Lee Y, Lee JM, Lee JE, et al. (2014) MR elastography for noninvasive assessment of hepatic fibrosis: reproducibility of the examination and reproducibility and repeatability of the liver stiffness value measurement. J Magn Reson Imaging 39(2):326–331CrossRefPubMedGoogle Scholar
  24. 24.
    Bota S, Sporea I, Sirli R, et al. (2012) Intra- and interoperator reproducibility of acoustic radiation force impulse (ARFI) elastography–preliminary results. Ultrasound Med Biol 38(7):1103–1108CrossRefPubMedGoogle Scholar
  25. 25.
    Shin HJ, Kim MJ, Kim HY, Roh YH, Lee MJ (2016) Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study. Eur Radiol 26(10):3361–3367CrossRefPubMedGoogle Scholar
  26. 26.
    Perazzo H, Fernandes FF, Soares JC, et al. (2016) Learning curve and intra/interobserver agreement of transient elastography in chronic hepatitis C patients with or without HIV co-infection. Clin Res Hepatol Gastroenterol 40(1):73–82CrossRefPubMedGoogle Scholar
  27. 27.
    Yoon K, Jeong WK, Kim Y, et al. (2017) 2-dimensional shear wave elastography: interobserver agreement and factors related to interobserver discrepancy. PLoS ONE 12(4):e0175747CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Piscaglia F, Salvatore V, Mulazzani L, et al. (2017) Differences in liver stiffness values obtained with new ultrasound elastography machines and FibroScan: a comparative study. Dig Liver Dis . doi: 10.1016/j.dld.2017.03.001 PubMedCrossRefGoogle Scholar
  29. 29.
    Trout AT, Serai S, Mahley AD, et al. (2016) Liver stiffness measurements with MR elastography: agreement and repeatability across imaging systems, field strengths, and pulse sequences. Radiology 281(3):793–804CrossRefPubMedGoogle Scholar
  30. 30.
    Serai SD, Yin M, Wang H, Ehman RL, Podberesky DJ (2015) Cross-vendor validation of liver magnetic resonance elastography. Abdom Imaging 40(4):789–794CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yoon JH, Lee JM, Joo I, et al. (2014) Hepatic fibrosis: prospective comparison of MR elastography and US shear-wave elastography for evaluation. Radiology 273(3):772–782CrossRefPubMedGoogle Scholar
  32. 32.
    Yoon JH, Lee JM, Woo HS, et al. (2013) Staging of hepatic fibrosis: comparison of magnetic resonance elastography and shear wave elastography in the same individuals. Korean J Radiol 14(2):202–212CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shire NJ, Yin M, Chen J, et al. (2011) Test-retest repeatability of MR elastography for noninvasive liver fibrosis assessment in hepatitis C. J Magn Reson Imaging 34(4):947–955CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dzyubak B, Venkatesh SK, Manduca A, Glaser KJ, Ehman RL (2015) Automated liver elasticity calculation for MR elastography. J Magn Reson Imaging . doi: 10.1002/jmri.25072 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhao H, Chen J, Meixner DD, et al. (2014) Noninvasive assessment of liver fibrosis using ultrasound-based shear wave measurement and comparison to magnetic resonance elastography. J Ultrasound Med 33(9):1597–1604CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Barr RG, Ferraioli G, Palmeri ML, et al. (2016) Elastography assessment of liver fibrosis: society of radiologists in ultrasound consensus conference statement. Ultrasound Q 32(2):94–107CrossRefPubMedGoogle Scholar
  37. 37.
    Trout AT, Podberesky DJ, Dillman JR (2016) Consensus on elastography of the liver. Radiology 278(1):303CrossRefPubMedGoogle Scholar
  38. 38.
    Imajo K, Kessoku T, Honda Y, et al. (2016) Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 150(3):626–637 (e7)CrossRefPubMedGoogle Scholar
  39. 39.
    Friedrich-Rust M, Ong MF, Martens S, et al. (2008) Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 134(4):960–974CrossRefPubMedGoogle Scholar
  40. 40.
    Stebbing J, Farouk L, Panos G, et al. (2010) A meta-analysis of transient elastography for the detection of hepatic fibrosis. J Clin Gastroenterol 44(3):214–219CrossRefPubMedGoogle Scholar
  41. 41.
    Talwalkar JA, Kurtz DM, Schoenleber SJ, West CP, Montori VM (2007) Ultrasound-based transient elastography for the detection of hepatic fibrosis: systematic review and meta-analysis. Clin Gastroenterol Hepatol 5(10):1214–1220CrossRefPubMedGoogle Scholar
  42. 42.
    Bota S, Herkner H, Sporea I, et al. (2013) Meta-analysis: ARFI elastography versus transient elastography for the evaluation of liver fibrosis. Liver Int 33(8):1138–1147CrossRefPubMedGoogle Scholar
  43. 43.
    Guo Y, Parthasarathy S, Goyal P, et al. (2015) Magnetic resonance elastography and acoustic radiation force impulse for staging hepatic fibrosis: a meta-analysis. Abdom Imaging 40(4):818–834CrossRefPubMedGoogle Scholar
  44. 44.
    Singh S, Venkatesh SK, Wang Z, et al. (2015) Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clin Gastroenterol Hepatol 13(3):440–451 (e6)CrossRefPubMedGoogle Scholar
  45. 45.
    Asrani SK, Talwalkar JA, Kamath PS, et al. (2014) Role of magnetic resonance elastography in compensated and decompensated liver disease. J Hepatol 60(5):934–939CrossRefPubMedGoogle Scholar
  46. 46.
    Vispo E, Barreiro P, Del Valle J, et al. (2009) Overestimation of liver fibrosis staging using transient elastography in patients with chronic hepatitis C and significant liver inflammation. Antivir Ther 14(2):187–193PubMedGoogle Scholar
  47. 47.
    Wang HK, Lai YC, Tseng HS, et al. (2012) Hepatic venous congestion after living donor liver transplantation: quantitative assessment of liver stiffness using shear wave elastography–a case report. Transpl Proc 44(3):814–816CrossRefGoogle Scholar
  48. 48.
    Ronot M, Lambert S, Elkrief L, et al. (2014) Assessment of portal hypertension and high-risk oesophageal varices with liver and spleen three-dimensional multifrequency MR elastography in liver cirrhosis. Eur Radiol 24(6):1394–1402PubMedGoogle Scholar
  49. 49.
    Yin M, Talwalkar JA, Glaser KJ, et al. (2011) Dynamic postprandial hepatic stiffness augmentation assessed with MR elastography in patients with chronic liver disease. AJR Am J Roentgenol 197(1):64–70CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Asbach P, Klatt D, Hamhaber U, et al. (2008) Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson Med 60(2):373–379CrossRefPubMedGoogle Scholar
  51. 51.
    Catheline S, Gennisson JL, Delon G, et al. (2004) Measuring of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. J Acoust Soc Am 116(6):3734–3741CrossRefPubMedGoogle Scholar
  52. 52.
    Guo J, Posnansky O, Hirsch S, et al. (2012) Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography. Phys Med Biol 57(12):4041–4053CrossRefPubMedGoogle Scholar
  53. 53.
    Klatt D, Friedrich C, Korth Y, et al. (2010) Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography. Biorheology 47(2):133–141PubMedGoogle Scholar
  54. 54.
    Vappou J, Maleke C, Konofagou EE (2009) Quantitative viscoelastic parameters measured by harmonic motion imaging. Phys Med Biol 54(11):3579–3594CrossRefPubMedGoogle Scholar
  55. 55.
    Doyley MM (2012) Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys Med Biol 57(3):R35–R73CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sack I, Beierbach B, Wuerfel J, et al. (2009) The impact of aging and gender on brain viscoelasticity. Neuroimage 46(3):652–657CrossRefPubMedGoogle Scholar
  57. 57.
    Suki B, Barabasi AL, Lutchen KR (1994) Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol 76(6):2749–2759CrossRefPubMedGoogle Scholar
  58. 58.
    Robert B, Sinkus R, Larrat B, Tanter M, Fink M (2006) A new rheological model based on fractional derivatives for biological tissues. IEEE Ultrasonics Symposium, pp. 1033–1036Google Scholar
  59. 59.
    Klatt D, Hamhaber U, Asbach P, Braun J, Sack I (2007) Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 52(24):7281–7294CrossRefPubMedGoogle Scholar
  60. 60.
    Barry CT, Mills B, Hah Z, et al. (2012) Shear wave dispersion measures liver steatosis. Ultrasound Med Biol 38(2):175–182CrossRefPubMedGoogle Scholar
  61. 61.
    Yin M, Glaser KJ, Manduca A, et al. (2017) Distinguishing between hepatic inflammation and fibrosis with MR elastography. Radiology . doi: 10.1148/radiol.2017160622 PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Yin Z, Glaser KJ, Manduca A, et al. (2015) Slip interface imaging predicts tumor-brain adhesion in vestibular schwannomas. Radiology 277(2):507–517CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of RadiologyMayo ClinicRochesterUSA

Personalised recommendations