Abdominal Radiology

, Volume 43, Issue 5, pp 1245–1253 | Cite as

Quantification of perfusion reduction by using 2D-perfusion angiography following transarterial chemoembolization with drug-eluting beads

  • Sabine K. Maschke
  • Thomas Werncke
  • Roman Klöckner
  • Thomas Rodt
  • Julius Renne
  • Martha M. Kirstein
  • Arndt Vogel
  • Frank K. Wacker
  • Bernhard C. Meyer
  • Jan B. Hinrichs
Article
  • 104 Downloads

Abstract

Purpose

To analyze the feasibility of 2D-perfusion angiography (2D-PA) for the quantification of perfusion reduction following transarterial chemoembolization with drug-eluting beads (DEB-TACE).

Methods

Overall, 24 DEB-TACE procedures in 19 patients were included. To quantify changes in tumor perfusion following DEB-TACE using 2D-PA, the acquired digital subtraction angiography (DSA) series were post-processed. A reference region-of-interest (ROI) in a main hepatic artery and two, distal target ROIs in embolized tumor tissue and in non-target liver parenchyma were placed in corresponding areas on DSA pre- and post-DEB-TACE. The time to peak (TTP), peak density (PD), and the area under the curve (AUC) were assessed and the ratios reference ROI/target ROIs were calculated.

Results

In the embolized tumor, the 2D-PA ratios changed significantly (p < 0.05) after DEB-TACE, whereas no significant change was observed for non-target liver parenchyma (p > 0.05). PDtumor/PDinflow differed significantly to PDparenchyma/PDinflow pre-DEB-TACE (p < 0.0001), likewise AUCtumor/AUCinflow to AUCparenchyma/AUCinflow (p < 0.0001) with higher values in tumor tissue. The post-DEB-TACE ratios of AUC decreased significantly in the tumor tissue compared to the non-target liver parenchyma (p < 0.05).

Conclusion

2D-PA offers an objective approach to quantify the immediate perfusion reduction of embolized tumor tissue following DEB-TACE and may therefore be used to monitor peri-interventional stasis and to quantify technical success.

Keywords

2D-perfusion angiography Transarterial chemoembolization Hepatocellular carcinoma Drug-eluting beads transarterial chemoembolization Drug-eluting beads Digital subtraction angiography 

Abbreviations

2D-PA

2D-perfusion angiography

AFP

Alpha-fetoprotein

ALT

Alanin-aminotransferase

AST

Aspartat-aminotransferase

AUC

Area under the curve

BPA

Balloon pulmonary angioplasty

CACT

C-Arm computed tomography

CHA

Common hepatic artery

CHE

Cholinesterase

CT

Computed tomography

CTEPH

Chronic thromboembolic pulmonary hypertension

cTACE

Conventional transarterial chemoembolization with Lipiodol

DSA

Digital subtraction angiography

DEB-TACE

Drug-eluting beads transarterial chemoembolization

GGT

Gamma-glutamyltranspeptidase

HCC

Hepatocellular carcinoma

MRI

Magnetic resonance imaging

PD

Peak density

ROI

Region-of-interest

SACE

Subjective angiographic chemoembolization endpoint scale

TACE

Transarterial chemoembolization

TTP

Time to peak

Notes

Author contribution

All authors substantially contributed to the conception and design, acquisition of data or analysis and interpretation of data for this work. All authors drafted the article or substantially revised it due to the important intellectual content. All authors gave final approval of this version of the manuscript to be published.

Compliance with ethical standards

Funding

The study was funded in parts by personal grants from the “Junge Akademie”.

Conflict of interest statement

Jan Hinrichs, Sabine Maschke, Thomas Rodt, Julius Renne, Roman Klöckner, Thomas Werncke, Matha Kirstein, Arndt Vogel: No conflict of interest. Frank Wacker: Grants from Siemens Healthcare, grants from DFG, Rebirth-Cluster of Excellence, grants from BMBF, German Centre for Lung Research (DZL), grants from Promedicus Ltd., outside the submitted work. Bernhard Meyer: Grants from Siemens Healthcare, during the conduct of the study; grants from Promedicus Ltd., outside the submitted work.

Statement of informed consent and human rights

Our local ethics committee approved our protocol, and written informed consent was obtained from each study patient. The study follows the ethical standards of the Declaration of Helsinki. The article includes no identifying information (does not apply to this article).

Statement of human rights and animal rights

The study follows the ethical standards of the Declaration of Helsinki. Animal studies are not part of this article (does not apply to this article).

References

  1. 1.
    Torre LA, Bray F, Siegel RL, et al. (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. doi: 10.3322/caac.21262 CrossRefPubMedGoogle Scholar
  2. 2.
    European Association For The Study Of The Liver, European Organisation For Research And Treatment Of Cancer (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 56:908–943. doi: 10.1016/j.jhep.2011.12.001 CrossRefGoogle Scholar
  3. 3.
    Forner A, Llovet JM, Bruix J (2012) Chemoembolization for intermediate HCC: Is there proof of survival benefit? J Hepatol 56:984–986. doi: 10.1016/j.jhep.2011.08.017 CrossRefPubMedGoogle Scholar
  4. 4.
    Brown DB, Pilgram TK, Darcy MD, et al. (2005) Hepatic arterial chemoembolization for hepatocellular carcinoma: comparison of survival rates with different embolic agents. J Vasc Interv Radiol 16:1661–1666. doi: 10.1097/01.RVI.0000182160.26798.A2 CrossRefPubMedGoogle Scholar
  5. 5.
    Coldwell DM, Stokes KR, Yakes WF. (1994) Embolotherapy: agents, clinical applications, and techniques. Radiographics 14: 623–43– quiz 645–6. doi: 10.1148/radiographics.14.3.8066276
  6. 6.
    Ikeda M, Maeda S, Shibata J, et al. (2004) Transcatheter arterial chemotherapy with and without embolization in patients with hepatocellular carcinoma. Oncology 66:24–31. doi: 10.1159/000076331 CrossRefPubMedGoogle Scholar
  7. 7.
    Geschwind J-FH, Ramsey DE, Cleffken B, et al. (2003) Transcatheter arterial chemoembolization of liver tumors: effects of embolization protocol on injectable volume of chemotherapy and subsequent arterial patency. Cardiovasc Interv Radiol 26:111–117. doi: 10.1007/s00270-002-2524-6 CrossRefGoogle Scholar
  8. 8.
    Bruix J, Sherman M, Llovet JM, et al. (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 35:421–430CrossRefPubMedGoogle Scholar
  9. 9.
    Lewandowski RJ, Wang D, Gehl J, et al. (2007) A comparison of chemoembolization endpoints using angiographic versus transcatheter intraarterial perfusion/MR imaging monitoring. J Vasc Interv Radiol 18:1249–1257. doi: 10.1016/j.jvir.2007.06.028 CrossRefPubMedGoogle Scholar
  10. 10.
    Jens S, Marquering HA, Koelemay MJW, Reekers JA (2015) Perfusion angiography of the foot in patients with critical limb ischemia: description of the technique. Cardiovasc Intervent Radiol 38:201–205. doi: 10.1007/s00270-014-1036-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Reekers JA, Koelemay MJW, Marquering HA, van Bavel ET (2016) Functional imaging of the foot with perfusion angiography in critical limb ischemia. Cardiovasc Interv Radiol 39:183–189. doi: 10.1007/s00270-015-1253-6 CrossRefGoogle Scholar
  12. 12.
    Murray T, Rodt T, Lee MJ (2016) Two-dimensional perfusion angiography of the foot: technical considerations and initial analysis. J Endovasc Ther 23:58–64. doi: 10.1177/1526602815621289 CrossRefPubMedGoogle Scholar
  13. 13.
    Hinrichs JB, Murray T, Akin M, et al. (2017) Evaluation of a novel 2D perfusion angiography technique independent of pump injections for assessment of interventional treatment of peripheral vascular disease. Int J Cardiovasc Imaging. 33:295–301. doi: 10.1007/s10554-016-1008-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang J, Cheng J-J, Huang K-Y, et al. (2016) Quantitative assessment of angiographic perfusion reduction using color-coded digital subtraction angiography during transarterial chemoembolization. Abdom Radiol (NY). 41:545–552. doi: 10.1007/s00261-015-0622-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Lin Y-Y, Lee R-C, Guo W-Y, et al. (2016) Quantitative real-time fluoroscopy analysis on measurement of the hepatic arterial flow during transcatheter arterial chemoembolization of hepatocellular carcinoma: comparison with quantitative digital subtraction angiography analysis. Cardiovasc Interv Radiol 39:1557–1563. doi: 10.1007/s00270-016-1421-3 CrossRefGoogle Scholar
  16. 16.
    Maschke SK, Renne J, Werncke T, et al. (2017) Chronic thromboembolic pulmonary hypertension: evaluation of 2D-perfusion angiography in patients who undergo balloon pulmonary angioplasty. Eur Radiol 2:573. doi: 10.1007/s00330-017-4806-z Google Scholar
  17. 17.
    Lin Y-Y, Lee R-C, Tseng H-S, et al. (2015) Objective measurement of arterial flow before and after transcatheter arterial chemoembolization: a feasibility study using quantitative color-coding analysis. Cardiovasc Interv Radiol 38:1494–1501. doi: 10.1007/s00270-015-1111-6 CrossRefGoogle Scholar
  18. 18.
    Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology. 53:1020–1022. doi: 10.1002/hep.24199 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schoenfeld C, Cebotari S, Hinrichs J, et al. (2016) MR Imaging-derived regional pulmonary parenchymal perfusion and cardiac function for monitoring patients with chronic thromboembolic pulmonary hypertension before and after pulmonary endarterectomy. Radiology. 279:925–934. doi: 10.1148/radiol.2015150765 CrossRefPubMedGoogle Scholar
  20. 20.
    Baradaran H, Fodera V, Mir D, et al. (2015) Evaluating CT perfusion deficits in global cerebral edema after aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol. 36:1431–1435. doi: 10.3174/ajnr.A4328 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sabine K. Maschke
    • 1
  • Thomas Werncke
    • 1
  • Roman Klöckner
    • 2
  • Thomas Rodt
    • 1
  • Julius Renne
    • 1
  • Martha M. Kirstein
    • 3
  • Arndt Vogel
    • 3
  • Frank K. Wacker
    • 1
  • Bernhard C. Meyer
    • 1
  • Jan B. Hinrichs
    • 1
    • 4
  1. 1.Department of Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany
  2. 2.Department of Diagnostic and Interventional RadiologyJohannes Gutenberg-University Medical CentreMainzGermany
  3. 3.Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany
  4. 4.Institute for Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany

Personalised recommendations