Skip to main content
Log in

Fertility-sparing for young patients with gynecologic cancer: How MRI can guide patient selection prior to conservative management

  • Pictorial Essay
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

An Erratum to this article was published on 11 November 2017

This article has been updated

Abstract

Historically, cancer treatment has emphasized measures for the “cure” regardless of the long-term consequences. Advances in cancer detection and treatment have resulted in improved outcomes bringing to the fore various quality of life considerations including future fertility. For many young cancer patients, fertility preservation is now an integral component of clinical decision-making and treatment design. Optimal fertility-sparing options for young patients with gynecologic cancer are influenced by patient age, primary cancer, treatment regimens, and patient preferences. Possible approaches include embryo or oocyte cryopreservation, ovarian transposition, conservative surgery, and conservative medical treatment to delay radical surgery. These may be used alone or in combination to maximize fertility preservation. Awareness of the various fertility-sparing options, eligibility criteria, and the central role of magnetic resonance imaging in the proper selection of patients will enable radiologists to produce complete clinically relevant imaging reports and serve as effective consultants to referring clinicians. Knowledge of the potential imaging pitfalls is essential to avoid misinterpretation and guide appropriate management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 11 November 2017

    The original version of this article unfortunately contained mistakes. The figures 7D, 7E and 7F were missing in the article and arrows were missing in the figures 6C, 8B and 11C. The year of publication and volume number for references 19, 79 and 87 have been updated. Also, the Table 2 layout has been improved for better readability. The Publisher apologizes for the mistakes and the inconvenience caused.

Abbreviations

ADC:

Apparent diffusion coefficient

D&C:

Dilatation and curettage

DCE-MRI:

Dynamic contrast-enhanced MRI

DWI:

Diffusion-weighted imaging

ESMO:

European Society for Medical Oncology

ESUR:

European Society of Urogenital Radiology

FDG:

Fluorodeoxyglucose

FIGO:

International Federation of Gynecology and Obstetrics

FST1WI:

Fat-saturated T1WI

JZ:

Junctional zone

LVSI:

Lymphovascular space invasion

MRI:

Magnetic resonance imaging

NCCN:

National Comprehensive Cancer Network

OHSS:

Ovarian hyperstimulation syndrome

PET/CT:

Positron emission tomography–computed tomography

PET/MRI:

Positron emission tomography–magnetic resonance imaging

USO:

Unilateral salpingo-oophorectomy

ROI:

Region of interest

SEE:

Subendometrial enhancement

SI:

Signal intensity

T1WI:

T1-Weighted imaging

T2WI:

T2-Weighted imaging

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  2. Woodruff TK (2010) The Oncofertility Consortium–addressing fertility in young people with cancer. Nat Rev Clin Oncol 7(8):466–475

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carter J, Rowland K, Chi D, et al. (2005) Gynecologic cancer treatment and the impact of cancer-related infertility. Gynecol Oncol 97(1):90–95

    Article  PubMed  Google Scholar 

  4. Loren AW, Mangu PB, Beck LN, et al. (2013) Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 31(19):2500–2510

    Article  PubMed  PubMed Central  Google Scholar 

  5. De Vos M, Smitz J, Woodruff TK (2014) Fertility preservation in women with cancer. Lancet 384(9950):1302–1310

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sala E, Rockall AG, Freeman SJ, Mitchell DG, Reinhold C (2013) The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology 266(3):717–740

    Article  PubMed  Google Scholar 

  7. Kinkel K, Lu Y, Mehdizade A, Pelte MF, Hricak H (2005) Indeterminate ovarian mass at US: incremental value of second imaging test for characterization—meta-analysis and Bayesian analysis. Radiology 236(1):85–94

    Article  PubMed  Google Scholar 

  8. Noyes N, Knopman JM, Long K, Coletta JM, Abu-Rustum NR (2011) Fertility considerations in the management of gynecologic malignancies. Gynecol Oncol 120(3):326–333

    Article  PubMed  Google Scholar 

  9. Practice Committee of the American Society for Reproductive Medicine (2014) Ovarian tissue cryopreservation: a committee opinion. Fertil Steril 101(5):1237–1243

    Article  Google Scholar 

  10. Bastings L, Beerendonk CC, Westphal JR, et al. (2013) Autotransplantation of cryopreserved ovarian tissue in cancer survivors and the risk of reintroducing malignancy: a systematic review. Hum Reprod Update 19(5):483–506

    Article  CAS  PubMed  Google Scholar 

  11. Baron KT, Babagbemi KT, Arleo EK, Asrani AV, Troiano RN (2013) Emergent complications of assisted reproduction: expecting the unexpected. Radiographics 33(1):229–244

    Article  PubMed  Google Scholar 

  12. Zivi E, Simon A, Laufer N (2010) Ovarian hyperstimulation syndrome: definition, incidence, and classification. Semin Reprod Med 28(6):441–447

    Article  CAS  PubMed  Google Scholar 

  13. Kim IY, Lee BH (1997) Ovarian hyperstimulation syndrome. US and CT appearances. Clin Imaging 21(4):284–286

    Article  CAS  PubMed  Google Scholar 

  14. Jung SE, Byun JY, Lee JM, et al. (2001) MR imaging of maternal diseases in pregnancy. AJR Am J Roentgenol 177(6):1293–1300

    Article  CAS  PubMed  Google Scholar 

  15. Gelbaya TA (2010) Short and long-term risks to women who conceive through in vitro fertilization. Hum Fertil (Camb Engl) 13(1):19–27

    Article  Google Scholar 

  16. Zhang FL, Fu LL, Yang Y (2016) Both thromboembolic stroke and cerebral venous thrombosis resulting from Ovarian Hyperstimulation Syndrome (OHSS). J Obstet Gynaecol 36(2):267–268

    Article  CAS  PubMed  Google Scholar 

  17. Wallace WH, Thomson AB, Saran F, Kelsey TW (2005) Predicting age of ovarian failure after radiation to a field that includes the ovaries. Int J Radiat Oncol Biol Phys 62(3):738–744

    Article  PubMed  Google Scholar 

  18. Wallace WH, Anderson RA, Irvine DS (2005) Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol 6(4):209–218

    Article  PubMed  Google Scholar 

  19. Milgrom SA, Vargas HA, Sala E, et al. (2013) Acute effects of pelvic irradiation on the adult uterus revealed by dynamic contrast-enhanced MRI. Br J Radiol 86(1031):20130334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Green DM, Sklar CA, Boice JD Jr, et al. (2009) Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the Childhood Cancer Survivor Study. J Clin Oncol 27(14):2374–2381

    Article  PubMed  PubMed Central  Google Scholar 

  21. Irtan S, Orbach D, Helfre S, Sarnacki S (2013) Ovarian transposition in prepubescent and adolescent girls with cancer. Lancet Oncol 14(13):e601–e608

    Article  PubMed  Google Scholar 

  22. Oliver Perez MR, Magrina J, Garcia AT, Jimenez Lopez JS (2015) Prophylactic salpingectomy and prophylactic salpingoophorectomy for adnexal high-grade serous epithelial carcinoma: a reappraisal. Surg Oncol 24(4):335–344

    Article  PubMed  Google Scholar 

  23. Gubbala K, Laios A, Gallos I, et al. (2014) Outcomes of ovarian transposition in gynaecological cancers; a systematic review and meta-analysis. J Ovarian Res 7:69

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yamamoto R, Okamoto K, Yukiharu T, et al. (2001) A study of risk factors for ovarian metastases in stage Ib-IIIb cervical carcinoma and analysis of ovarian function after a transposition. Gynecol Oncol 82(2):312–316

    Article  CAS  PubMed  Google Scholar 

  25. Sella T, Mironov S, Hricak H (2005) Imaging of transposed ovaries in patients with cervical carcinoma. AJR Am J Roentgenol 184(5):1602–1610

    Article  PubMed  Google Scholar 

  26. Ulaner GA, Lyall A (2013) Identifying and distinguishing treatment effects and complications from malignancy at FDG PET/CT. Radiographics 33(6):1817–1834

    Article  PubMed  Google Scholar 

  27. Forstner R, Thomassin-Naggara I, Cunha TM, et al. (2016) ESUR recommendations for MR imaging of the sonographically indeterminate adnexal mass: an update. Eur Radiol 27:2248–2257

    Article  PubMed  PubMed Central  Google Scholar 

  28. Spencer JA, Ghattamaneni S (2010) MR imaging of the sonographically indeterminate adnexal mass. Radiology 256(3):677–694

    Article  PubMed  Google Scholar 

  29. de Souza NM, Dina R, McIndoe GA, Soutter WP (2006) Cervical cancer: value of an endovaginal coil magnetic resonance imaging technique in detecting small volume disease and assessing parametrial extension. Gynecol Oncol 102(1):80–85

    Article  Google Scholar 

  30. Downey K, Attygalle AD, Morgan VA, et al. (2016) Comparison of optimised endovaginal vs external array coil T2-weighted and diffusion-weighted imaging techniques for detecting suspected early-stage (IA/IB1) uterine cervical cancer. Eur Radiol 26(4):941–950

    Article  PubMed  Google Scholar 

  31. Downey K, Jafar M, Attygalle AD, et al. (2013) Influencing surgical management in patients with carcinoma of the cervix using a T2- and ZOOM-diffusion-weighted endovaginal MRI technique. Br J Cancer 109(3):615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Downey K, Shepherd JH, Attygalle AD, et al. (2014) Preoperative imaging in patients undergoing trachelectomy for cervical cancer: validation of a combined T2- and diffusion-weighted endovaginal MRI technique at 3.0 T. Gynecol Oncol 133(2):326–332

    Article  PubMed  PubMed Central  Google Scholar 

  33. Balleyguier C, Sala E, Da Cunha T, et al. (2011) Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol 21(5):1102–1110

    Article  PubMed  Google Scholar 

  34. Kinkel K, Forstner R, Danza FM, et al. (2009) Staging of endometrial cancer with MRI: guidelines of the European Society of Urogenital Imaging. Eur Radiol 19(7):1565–1574

    Article  CAS  PubMed  Google Scholar 

  35. Charles-Edwards EM, Messiou C, Morgan VA, et al. (2008) Diffusion-weighted imaging in cervical cancer with an endovaginal technique: potential value for improving tumor detection in stage Ia and Ib1 disease. Radiology 249(2):541–550

    Article  PubMed  Google Scholar 

  36. Nougaret S, Tirumani SH, Addley H, et al. (2013) Pearls and pitfalls in MRI of gynecologic malignancy with diffusion-weighted technique. AJR Am J Roentgenol 200(2):261–276

    Article  PubMed  Google Scholar 

  37. Akita A, Shinmoto H, Hayashi S, et al. (2011) Comparison of T2-weighted and contrast-enhanced T1-weighted MR imaging at 1.5 T for assessing the local extent of cervical carcinoma. Eur Radiol 21(9):1850–1857

    Article  PubMed  Google Scholar 

  38. Sala E, Crawford R, Senior E, et al. (2009) Added value of dynamic contrast-enhanced magnetic resonance imaging in predicting advanced stage disease in patients with endometrial carcinoma. Int J Gynecol Cancer 19(1):141–146

    Article  PubMed  Google Scholar 

  39. Thomassin-Naggara I, Balvay D, Aubert E, et al. (2012) Quantitative dynamic contrast-enhanced MR imaging analysis of complex adnexal masses: a preliminary study. Eur Radiol 22(4):738–745

    Article  PubMed  Google Scholar 

  40. Thomassin-Naggara I, Aubert E, Rockall A, et al. (2013) Adnexal masses: development and preliminary validation of an MR imaging scoring system. Radiology 267(2):432–443

    Article  PubMed  Google Scholar 

  41. Thomassin-Naggara I, Balvay D, Rockall A, et al. (2015) Added value of assessing adnexal masses with advanced MRI techniques. Biomed Res Int 2015:785206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thomassin-Naggara I, Toussaint I, Perrot N, et al. (2011) Characterization of complex adnexal masses: value of adding perfusion- and diffusion-weighted MR imaging to conventional MR imaging. Radiology 258(3):793–803

    Article  PubMed  Google Scholar 

  43. American Cancer Society (2015) Global cancer facts & figures, 3rd edn. Atlanta: American Cancer Society

    Google Scholar 

  44. Cancer of the Cervix Uteri—SEER Stat Fact Sheets [Internet].http://seer.cancer.gov/statfacts/html/cervix.html. Accessed 16 May 2016

  45. Covens A, Rosen B, Murphy J, et al. (2002) How important is removal of the parametrium at surgery for carcinoma of the cervix? Gynecol Oncol 84(1):145–149

    Article  CAS  PubMed  Google Scholar 

  46. Colombo N, Carinelli S, Colombo A, et al. (2012) Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 23(Suppl 7):vii27–vii32

    PubMed  Google Scholar 

  47. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Cervical cancer. Version 1.2017. https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf. Accessed 27 November 2016.

  48. Bentivegna E, Gouy S, Maulard A, et al. (2016) Oncological outcomes after fertility-sparing surgery for cervical cancer: a systematic review. Lancet Oncol 17(6):e240–e253

    Article  PubMed  Google Scholar 

  49. Xu L, Sun FQ, Wang ZH (2011) Radical trachelectomy versus radical hysterectomy for the treatment of early cervical cancer: a systematic review. Acta Obstet Gynecol Scand 90(11):1200–1209

    Article  PubMed  Google Scholar 

  50. Pecorelli S, Zigliani L, Odicino F (2009) Revised FIGO staging for carcinoma of the cervix. Int J Gynaecol Obstet 105(2):107–108

    Article  PubMed  Google Scholar 

  51. Qin Y, Peng Z, Lou J, et al. (2009) Discrepancies between clinical staging and pathological findings of operable cervical carcinoma with stage IB-IIB: a retrospective analysis of 818 patients. Aust N Z J Obstet Gynaecol 49(5):542–544

    Article  PubMed  Google Scholar 

  52. Mitchell DG, Snyder B, Coakley F, et al. (2009) Early invasive cervical cancer: MRI and CT predictors of lymphatic metastases in the ACRIN 6651/GOG 183 intergroup study. Gynecol Oncol 112(1):95–103

    Article  PubMed  Google Scholar 

  53. Hricak H, Gatsonis C, Coakley FV, et al. (2007) Early invasive cervical cancer: CT and MR imaging in preoperative evaluation—ACRIN/GOG comparative study of diagnostic performance and interobserver variability. Radiology 245(2):491–498

    Article  PubMed  Google Scholar 

  54. Thomeer MG, Gerestein C, Spronk S, et al. (2013) Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma: systematic review and meta-analysis. Eur Radiol 23(7):2005–2018

    Article  PubMed  Google Scholar 

  55. Mitchell DG, Snyder B, Coakley F, et al. (2006) Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol 24(36):5687–5694

    Article  PubMed  Google Scholar 

  56. Rob L, Skapa P, Robova H (2011) Fertility-sparing surgery in patients with cervical cancer. Lancet Oncol 12(2):192–200

    Article  PubMed  Google Scholar 

  57. Rob L, Charvat M, Robova H, et al. (2007) Less radical fertility-sparing surgery than radical trachelectomy in early cervical cancer. Int J Gynecol Cancer 17(1):304–310

    Article  CAS  PubMed  Google Scholar 

  58. Abu-Rustum NR, Sonoda Y (2010) Fertility-sparing surgery in early-stage cervical cancer: indications and applications. J Natl Compr Canc Netw 8(12):1435–1438

    Article  PubMed  Google Scholar 

  59. Plante M (2013) Evolution in fertility-preserving options for early-stage cervical cancer: radical trachelectomy, simple trachelectomy, neoadjuvant chemotherapy. Int J Gynecol Cancer 23(6):982–989

    Article  PubMed  Google Scholar 

  60. Plante M (2015) Bulky early-stage cervical cancer (2-4 cm lesions): upfront radical trachelectomy or neoadjuvant chemotherapy followed by fertility-preserving surgery: which is the best option? Int J Gynecol Cancer 25(4):722–728

    Article  PubMed  Google Scholar 

  61. Noel P, Dube M, Plante M, St-Laurent G (2014) Early cervical carcinoma and fertility-sparing treatment options: MR imaging as a tool in patient selection and a follow-up modality. Radiographics 34(4):1099–1119

    Article  PubMed  Google Scholar 

  62. Wakefield JC, Downey K, Kyriazi S, deSouza NM (2013) New MR techniques in gynecologic cancer. AJR Am J Roentgenol 200(2):249–260

    Article  PubMed  Google Scholar 

  63. Seki H, Azumi R, Kimura M, Sakai K (1997) Stromal invasion by carcinoma of the cervix: assessment with dynamic MR imaging. AJR Am J Roentgenol 168(6):1579–1585

    Article  CAS  PubMed  Google Scholar 

  64. Yamashita Y, Takahashi M, Sawada T, Miyazaki K, Okamura H (1992) Carcinoma of the cervix: dynamic MR imaging. Radiology 182(3):643–648

    Article  CAS  PubMed  Google Scholar 

  65. Sahdev A, Sohaib SA, Wenaden AE, Shepherd JH, Reznek RH (2007) The performance of magnetic resonance imaging in early cervical carcinoma: a long-term experience. Int J Gynecol Cancer 17(3):629–636

    Article  CAS  PubMed  Google Scholar 

  66. Hricak H, Yu KK (1996) Radiology in invasive cervical cancer. AJR Am J Roentgenol 167(5):1101–1108

    Article  CAS  PubMed  Google Scholar 

  67. Hricak H, Lacey CG, Sandles LG, et al. (1988) Invasive cervical carcinoma: comparison of MR imaging and surgical findings. Radiology 166(3):623–631

    Article  CAS  PubMed  Google Scholar 

  68. Exner M, Kuhn A, Stumpp P, et al. (2016) Value of diffusion-weighted MRI in diagnosis of uterine cervical cancer: a prospective study evaluating the benefits of DWI compared to conventional MR sequences in a 3T environment. Acta Radiol 57(7):869–877

    Article  PubMed  Google Scholar 

  69. Lakhman Y, Akin O, Park KJ, et al. (2013) Stage IB1 cervical cancer: role of preoperative MR imaging in selection of patients for fertility-sparing radical trachelectomy. Radiology 269(1):149–158

    Article  PubMed  Google Scholar 

  70. Peppercorn PD, Jeyarajah AR, Woolas R, et al. (1999) Role of MR imaging in the selection of patients with early cervical carcinoma for fertility-preserving surgery: initial experience. Radiology 212(2):395–399

    Article  CAS  PubMed  Google Scholar 

  71. de Boer P, Adam JA, Buist MR, et al. (2013) Role of MRI in detecting involvement of the uterine internal os in uterine cervical cancer: systematic review of diagnostic test accuracy. Eur J Radiol 82(9):e422–e428

    Article  PubMed  Google Scholar 

  72. Sonoda Y, Abu-Rustum NR, Gemignani ML, et al. (2004) A fertility-sparing alternative to radical hysterectomy: how many patients may be eligible? Gynecol Oncol 95(3):534–538

    Article  PubMed  Google Scholar 

  73. Delgado G, Bundy B, Zaino R, et al. (1990) Prospective surgical-pathological study of disease-free interval in patients with stage IB squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol Oncol 38(3):352–357

    Article  CAS  PubMed  Google Scholar 

  74. Sedlis A, Bundy BN, Rotman MZ, et al. (1999) A randomized trial of pelvic radiation therapy versus no further therapy in selected patients with stage IB carcinoma of the cervix after radical hysterectomy and pelvic lymphadenectomy: a Gynecologic Oncology Group Study. Gynecol Oncol 73(2):177–183

    Article  CAS  PubMed  Google Scholar 

  75. Hricak H, Yu KK, Powell CB, et al. (1996) Comparison of diagnostic studies in the pretreatment evaluation of stage Ib carcinoma of the cervix. Acad Radiol 3(Suppl 1):S44–S46

    Article  PubMed  Google Scholar 

  76. Aoki Y, Sasaki M, Watanabe M, et al. (2000) High-risk group in node-positive patients with stage IB, IIA, and IIB cervical carcinoma after radical hysterectomy and postoperative pelvic irradiation. Gynecol Oncol 77(2):305–309

    Article  CAS  PubMed  Google Scholar 

  77. McMahon CJ, Rofsky NM, Pedrosa I (2010) Lymphatic metastases from pelvic tumors: anatomic classification, characterization, and staging. Radiology 254(1):31–46

    Article  PubMed  Google Scholar 

  78. Rockall AG, Sohaib SA, Harisinghani MG, et al. (2005) Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol 23(12):2813–2821

    Article  PubMed  Google Scholar 

  79. Shen G, Zhou H, Jia Z, Deng H (2015) Diagnostic performance of diffusion-weighted MRI for detection of pelvic metastatic lymph nodes in patients with cervical cancer: a systematic review and meta-analysis. Br J Radiol 88(1052):20150063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stecco A, Buemi F, Cassara A, et al. (2016) Comparison of retrospective PET and MRI-DWI (PET/MRI-DWI) image fusion with PET/CT and MRI-DWI in detection of cervical and endometrial cancer lymph node metastases. Radiol Med (Torino) 121(7):537–545

    Article  Google Scholar 

  81. Queiroz MA, Kubik-Huch RA, Hauser N, et al. (2015) PET/MRI and PET/CT in advanced gynaecological tumours: initial experience and comparison. Eur Radiol 25(8):2222–2230

    Article  PubMed  Google Scholar 

  82. Ferlay J, Soerjomataram I, Dikshit R, et al. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  83. Howlader N, Noone A, Krapcho M, et al. SEER Cancer statistics review, 1975–2012. Based on November 2014 SEER data submission, posted to the SEER web site, April 2015. http://seer.cancer.gov/csr/1975_2012/. Accessed 9 September 2016

  84. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E (2016) Endometrial cancer. Lancet 387(10023):1094–1108

    Article  PubMed  Google Scholar 

  85. Haoula Z, Salman M, Atiomo W (2012) Evaluating the association between endometrial cancer and polycystic ovary syndrome. Hum Reprod (Oxf Engl) 27(5):1327–1331

    Article  Google Scholar 

  86. Navaratnarajah R, Pillay OC, Hardiman P (2008) Polycystic ovary syndrome and endometrial cancer. Semin Reprod Med 26(1):62–71

    Article  PubMed  Google Scholar 

  87. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E (2016) Endometrial cancer. Lancet 387(10023):1094–1108

    Article  PubMed  Google Scholar 

  88. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Uterine neoplasms. Version 1.2017. https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf. Accessed 27 November 2016.

  89. Colombo N, Creutzberg C, Amant F, et al. (2016) ESMO-ESGO-ESTRO Consensus conference on endometrial cancer: diagnosis, treatment and follow-up. Int J Gynecol Cancer 26(1):2–30

    Article  PubMed  Google Scholar 

  90. Kinkel K, Kaji Y, Yu KK, et al. (1999) Radiologic staging in patients with endometrial cancer: a meta-analysis. Radiology 212(3):711–718

    Article  CAS  PubMed  Google Scholar 

  91. Rodolakis A, Biliatis I, Morice P, et al. (2015) European Society of Gynecological Oncology Task Force for Fertility Preservation: clinical recommendations for fertility-sparing management in young endometrial cancer patients. Int J Gynecol Cancer 25(7):1258–1265

    Article  PubMed  Google Scholar 

  92. Minig L, Franchi D, Boveri S, et al. (2011) Progestin intrauterine device and GnRH analogue for uterus-sparing treatment of endometrial precancers and well-differentiated early endometrial carcinoma in young women. Ann Oncol 22(3):643–649

    Article  CAS  PubMed  Google Scholar 

  93. Kim MK, Seong SJ, Song T, et al. (2013) Comparison of dilatation & curettage and endometrial aspiration biopsy accuracy in patients treated with high-dose oral progestin plus levonorgestrel intrauterine system for early-stage endometrial cancer. Gynecol Oncol 130(3):470–473

    Article  CAS  PubMed  Google Scholar 

  94. Gallos ID, Yap J, Rajkhowa M, et al. (2012) Regression, relapse, and live birth rates with fertility-sparing therapy for endometrial cancer and atypical complex endometrial hyperplasia: a systematic review and metaanalysis. Am J Obstet Gynecol. 207(4):266.e1–266.e12

    Article  Google Scholar 

  95. Park JY, Kim DY, Kim JH, et al. (2013) Long-term oncologic outcomes after fertility-sparing management using oral progestin for young women with endometrial cancer (KGOG 2002). Eur J Cancer (Oxf Engl). 49(4):868–874

    Article  CAS  Google Scholar 

  96. Tangjitgamol S, Manusirivithaya S, Hanprasertpong J (2009) Fertility-sparing in endometrial cancer. Gynecol Obstet Invest 67(4):250–268

    Article  PubMed  Google Scholar 

  97. Erkanli S, Ayhan A (2010) Fertility-sparing therapy in young women with endometrial cancer: 2010 update. Int J Gynecol Cancer 20(7):1170–1187

    Article  PubMed  Google Scholar 

  98. Leitao MM Jr, Kehoe S, Barakat RR, et al. (2009) Comparison of D&C and office endometrial biopsy accuracy in patients with FIGO grade 1 endometrial adenocarcinoma. Gynecol Oncol 113(1):105–108

    Article  PubMed  Google Scholar 

  99. Beddy P, O’Neill AC, Yamamoto AK, et al. (2012) FIGO staging system for endometrial cancer: added benefits of MR imaging. Radiographics 32(1):241–254

    Article  PubMed  Google Scholar 

  100. Manfredi R, Mirk P, Maresca G, et al. (2004) Local-regional staging of endometrial carcinoma: role of MR imaging in surgical planning. Radiology 231(2):372–378

    Article  PubMed  Google Scholar 

  101. Yamashita Y, Harada M, Sawada T, et al. (1993) Normal uterus and FIGO stage I endometrial carcinoma: dynamic gadolinium-enhanced MR imaging. Radiology 186(2):495–501

    Article  CAS  PubMed  Google Scholar 

  102. Park SB, Moon MH, Sung CK, Oh S, Lee YH (2014) Dynamic contrast-enhanced MR imaging of endometrial cancer: optimizing the imaging delay for tumour-myometrium contrast. Eur Radiol 24(11):2795–2799

    Article  PubMed  Google Scholar 

  103. Tamai K, Koyama T, Saga T, et al. (2007) Diffusion-weighted MR imaging of uterine endometrial cancer. J Magn Reson Imaging 26(3):682–687

    Article  PubMed  Google Scholar 

  104. Fujii S, Matsusue E, Kigawa J, et al. (2008) Diagnostic accuracy of the apparent diffusion coefficient in differentiating benign from malignant uterine endometrial cavity lesions: initial results. Eur Radiol 18(2):384–389

    Article  PubMed  Google Scholar 

  105. Lin G, Ng KK, Chang CJ, et al. (2009) Myometrial invasion in endometrial cancer: diagnostic accuracy of diffusion-weighted 3.0-T MR imaging–initial experience. Radiology 250(3):784–792

    Article  PubMed  Google Scholar 

  106. Shen SH, Chiou YY, Wang JH, et al. (2008) Diffusion-weighted single-shot echo-planar imaging with parallel technique in assessment of endometrial cancer. AJR Am J Roentgenol 190(2):481–488

    Article  PubMed  Google Scholar 

  107. Fujii S, Kido A, Baba T, et al. (2015) Subendometrial enhancement and peritumoral enhancement for assessing endometrial cancer on dynamic contrast enhanced MR imaging. Eur J Radiol 84(4):581–589

    Article  PubMed  Google Scholar 

  108. Beddy P, Moyle P, Kataoka M, et al. (2012) Evaluation of depth of myometrial invasion and overall staging in endometrial cancer: comparison of diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 262(2):530–537

    Article  PubMed  Google Scholar 

  109. Rechichi G, Galimberti S, Signorelli M, et al. (2011) Endometrial cancer: correlation of apparent diffusion coefficient with tumor grade, depth of myometrial invasion, and presence of lymph node metastases. AJR Am J Roentgenol 197(1):256–262

    Article  PubMed  Google Scholar 

  110. Utsunomiya D, Notsute S, Hayashida Y, et al. (2004) Endometrial carcinoma in adenomyosis: assessment of myometrial invasion on T2-weighted spin-echo and gadolinium-enhanced T1-weighted images. AJR Am J Roentgenol 182(2):399–404

    Article  PubMed  Google Scholar 

  111. Turan T, Hizli D, Yilmaz SS, et al. (2012) What is the impact of cervical invasion on lymph node metastasis in patients with stage IIIC endometrial cancer? Arch Gynecol Obstet 285(4):1119–1124

    Article  PubMed  Google Scholar 

  112. Tewari KS, Filiaci VL, Spirtos NM, et al. (2012) Association of number of positive nodes and cervical stroma invasion with outcome of advanced endometrial cancer treated with chemotherapy or whole abdominal irradiation: a Gynecologic Oncology Group study. Gynecol Oncol 125(1):87–93

    Article  PubMed  Google Scholar 

  113. Seki H, Takano T, Sakai K (2000) Value of dynamic MR imaging in assessing endometrial carcinoma involvement of the cervix. AJR Am J Roentgenol 175(1):171–176

    Article  CAS  PubMed  Google Scholar 

  114. Lin G, Huang YT, Chao A, et al. (2016) Endometrial cancer with cervical stromal invasion: diagnostic accuracy of diffusion-weighted and dynamic contrast enhanced MR imaging at 3T. Eur Radiol 27(5):1867–1876

    Article  PubMed  Google Scholar 

  115. Castro IM, Connell PP, Waggoner S, Rotmensch J, Mundt AJ (2000) Synchronous ovarian and endometrial malignancies. Am J Clin Oncol 23(5):521–525

    Article  CAS  PubMed  Google Scholar 

  116. Gemer O, Bergman M, Segal S (2004) Ovarian metastasis in women with clinical stage I endometrial carcinoma. Acta Obstet Gynecol Scand 83(2):208–210

    Article  PubMed  Google Scholar 

  117. Bese T, Sal V, Kahramanoglu I, et al. (2016) Synchronous primary cancers of the endometrium and ovary with the same histopathologic type versus endometrial cancer With ovarian metastasis: a single institution review of 72 cases. Int J Gynecol Cancer 26(2):394–406

    Article  PubMed  Google Scholar 

  118. Walsh C, Holschneider C, Hoang Y, et al. (2005) Coexisting ovarian malignancy in young women with endometrial cancer. Obstet Gynecol 106(4):693–699

    Article  PubMed  Google Scholar 

  119. Anglesio MS, Wang YK, Maassen M, et al. (2016) Synchronous endometrial and ovarian carcinomas: evidence of clonality. J Natl Cancer Inst 108(6):djv428

    Article  PubMed  Google Scholar 

  120. Schultheis AM, Ng CK, De Filippo MR, et al. (2016) Massively parallel sequencing-based clonality analysis of synchronous endometrioid endometrial and ovarian carcinomas. J Natl Cancer Inst 108(6):djv427

    Article  PubMed  PubMed Central  Google Scholar 

  121. Willmott F, Allouni KA, Rockall A (2012) Radiological manifestations of metastasis to the ovary. J Clin Pathol 65(7):585–590

    Article  PubMed  Google Scholar 

  122. Benedetti Panici P, Basile S, Maneschi F, et al. (2008) Systematic pelvic lymphadenectomy vs. no lymphadenectomy in early-stage endometrial carcinoma: randomized clinical trial. J Natl Cancer Inst 100(23):1707–1716

    Article  PubMed  Google Scholar 

  123. Kitchener H, Swart AM, Qian Q, Amos C, Parmar MK (2009) Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study. Lancet 373(9658):125–136

    Article  CAS  PubMed  Google Scholar 

  124. Luomaranta A, Leminen A, Loukovaara M (2015) Magnetic resonance imaging in the assessment of high-risk features of endometrial carcinoma: a meta-analysis. Int J Gynecol Cancer 25(5):837–842

    Article  PubMed  Google Scholar 

  125. Howlader N, Noone AM, Krapcho M et al (eds) SEER cancer statistics review, 1975–2013. National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016. Accessed 7 November 2016.

  126. Hermans AJ, Kluivers KB, Janssen LM, et al. (2016) Adnexal masses in children, adolescents and women of reproductive age in the Netherlands: a nationwide population-based cohort study. Gynecol Oncol 143(1):93–97

    Article  PubMed  Google Scholar 

  127. Quirk JT, Natarajan N, Mettlin CJ (2005) Age-specific ovarian cancer incidence rate patterns in the United States. Gynecol Oncol 99(1):248–250

    Article  PubMed  Google Scholar 

  128. Gershenson DM (2012) Treatment of ovarian cancer in young women. Clin Obstet Gynecol 55(1):65–74

    Article  PubMed  Google Scholar 

  129. Colombo N, Peiretti M, Garbi A, et al. (2012) Non-epithelial ovarian cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 23(Suppl 7):vii20–vii26

    PubMed  Google Scholar 

  130. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Ovarian Cancer Version 1.2017 https://www.nccn.org/professionals/physician_gls/PDF/ovarian.pdf. Accessed 27 April 2017.

  131. Ledermann JA, Raja FA, Fotopoulou C, et al. (2013) Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 24(Suppl 6):vi24–vi32

    Article  PubMed  Google Scholar 

  132. Colombo N, Parma G, Zanagnolo V, Insinga A (2007) Management of ovarian stromal cell tumors. J Clin Oncol 25(20):2944–2951

    Article  CAS  PubMed  Google Scholar 

  133. Satoh T, Hatae M, Watanabe Y, et al. (2010) Outcomes of fertility-sparing surgery for stage I epithelial ovarian cancer: a proposal for patient selection. J Clin Oncol 28(10):1727–1732

    Article  PubMed  Google Scholar 

  134. Shaaban AM, Rezvani M, Elsayes KM, et al. (2014) Ovarian malignant germ cell tumors: cellular classification and clinical and imaging features. Radiographics 34(3):777–801

    Article  PubMed  Google Scholar 

  135. Mangili G, Sigismondi C, Gadducci A, et al. (2011) Outcome and risk factors for recurrence in malignant ovarian germ cell tumors: a MITO-9 retrospective study. Int J Gynecol Cancer 21(8):1414–1421

    Article  PubMed  Google Scholar 

  136. Heo SH, Kim JW, Shin SS, et al. (2014) Review of ovarian tumors in children and adolescents: radiologic-pathologic correlation. Radiographics 34(7):2039–2055

    Article  PubMed  Google Scholar 

  137. Brown J, Sood AK, Deavers MT, Milojevic L, Gershenson DM (2009) Patterns of metastasis in sex cord-stromal tumors of the ovary: can routine staging lymphadenectomy be omitted? Gynecol Oncol 113(1):86–90

    Article  PubMed  Google Scholar 

  138. Kennedy AW, Hart WR (1996) Ovarian papillary serous tumors of low malignant potential (serous borderline tumors). A long-term follow-up study, including patients with microinvasion, lymph node metastasis, and transformation to invasive serous carcinoma. Cancer 78(2):278–286

    Article  CAS  PubMed  Google Scholar 

  139. Morice P, Uzan C, Fauvet R, et al. (2012) Borderline ovarian tumour: pathological diagnostic dilemma and risk factors for invasive or lethal recurrence. Lancet Oncol 13(3):e103–e115

    Article  PubMed  Google Scholar 

  140. Vasconcelos I, de SousaMendes M (2015) Conservative surgery in ovarian borderline tumours: a meta-analysis with emphasis on recurrence risk. Eur J Cancer (Oxf Engl). 51(5):620–631

    Article  Google Scholar 

  141. Darai E, Fauvet R, Uzan C, et al. (2013) Fertility and borderline ovarian tumor: a systematic review of conservative management, risk of recurrence and alternative options. Hum Reprod Update 19(2):151–166

    Article  CAS  PubMed  Google Scholar 

  142. Uzan C, Muller E, Kane A, et al. (2014) Prognostic factors for recurrence after conservative treatment in a series of 119 patients with stage I serous borderline tumors of the ovary. Ann Oncol 25(1):166–171

    Article  CAS  PubMed  Google Scholar 

  143. Palomba S, Falbo A, Del Negro S, et al. (2010) Ultra-conservative fertility-sparing strategy for bilateral borderline ovarian tumours: an 11-year follow-up. Hum Reprod (Oxf Engl) 25(8):1966–1972

    Article  Google Scholar 

  144. Khunamornpong S, Settakorn J, Sukpan K, Suprasert P, Siriaunkgul S (2011) Mucinous tumor of low malignant potential (“borderline” or “atypical proliferative” tumor) of the ovary: a study of 171 cases with the assessment of intraepithelial carcinoma and microinvasion. Int J Gynecol Pathol 30(3):218–230

    Article  PubMed  Google Scholar 

  145. Kinkel K, Hricak H, Lu Y, Tsuda K, Filly RA (2000) US characterization of ovarian masses: a meta-analysis. Radiology 217(3):803–811

    Article  CAS  PubMed  Google Scholar 

  146. Timmerman D, Ameye L, Fischerova D, et al. (2010) Simple ultrasound rules to distinguish between benign and malignant adnexal masses before surgery: prospective validation by IOTA group. BMJ 341:c6839

    Article  PubMed  PubMed Central  Google Scholar 

  147. Van Calster B, Timmerman D, Valentin L, et al. (2012) Triaging women with ovarian masses for surgery: observational diagnostic study to compare RCOG guidelines with an International Ovarian Tumour Analysis (IOTA) group protocol. BJOG 119(6):662–671

    Article  PubMed  Google Scholar 

  148. Van Calster B, Van Hoorde K, Froyman W, et al. (2015) Practical guidance for applying the ADNEX model from the IOTA group to discriminate between different subtypes of adnexal tumors. Facts Views Vis Obgyn 7(1):32–41

    PubMed  PubMed Central  Google Scholar 

  149. Sohaib SA, Mills TD, Sahdev A, et al. (2005) The role of magnetic resonance imaging and ultrasound in patients with adnexal masses. Clin Radiol 60(3):340–348

    Article  CAS  PubMed  Google Scholar 

  150. Sohaib SA, Sahdev A, Van Trappen P, Jacobs IJ, Reznek RH (2003) Characterization of adnexal mass lesions on MR imaging. AJR Am J Roentgenol 180(5):1297–1304

    Article  PubMed  Google Scholar 

  151. Hricak H, Chen M, Coakley FV, et al. (2000) Complex adnexal masses: detection and characterization with MR imaging—multivariate analysis. Radiology 214(1):39–46

    Article  CAS  PubMed  Google Scholar 

  152. Zhao SH, Qiang JW, Zhang GF, et al. (2014) MRI appearances of ovarian serous borderline tumor: pathological correlation. J Magn Reson Imaging 40(1):151–156

    Article  PubMed  Google Scholar 

  153. Zhao SH, Qiang JW, Zhang GF, et al. (2014) Diffusion-weighted MR imaging for differentiating borderline from malignant epithelial tumours of the ovary: pathological correlation. Eur Radiol 24(9):2292–2299

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinead H. McEvoy.

Ethics declarations

Funding

This study was funded in part through the NIH/NCI Cancer Center Support Grant P30 CA008748.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This review article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Statement of informed consent was not applicable since the manuscript does not contain any patient data.

Additional information

The original version of this article is revised: “The figures 7D, 7E and 7F were missing in the article and arrows were missing in the figures 6C, 8B and 11C. The year of publication and volume number for references 19, 79 and 87 have been updated. The above mistakes are corrected through erratum. Also, the Table 2 layout has been improved for better readability”. The Publisher apologizes for the mistakes and the inconvenience caused.

CME activity This article has been selected as the CME activity for the current month. Please visit https://ce.mayo.edu/node/46007 and follow the instructions to complete this CME activity.

An erratum to this article is available at https://doi.org/10.1007/s00261-017-1205-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McEvoy, S.H., Nougaret, S., Abu-Rustum, N.R. et al. Fertility-sparing for young patients with gynecologic cancer: How MRI can guide patient selection prior to conservative management. Abdom Radiol 42, 2488–2512 (2017). https://doi.org/10.1007/s00261-017-1179-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1179-3

Keywords

Navigation