Abdominal Radiology

, Volume 41, Issue 5, pp 877–888 | Cite as

Targeted prostate biopsy and MR-guided therapy for prostate cancer

  • David A. Woodrum
  • Akira Kawashima
  • Krzysztof R. Gorny
  • Lance A. Mynderse
Invited Article


Prostate cancer is the most commonly diagnosed noncutaneous cancer and second-leading cause of death in men. Many patients with clinically organ-confined prostate cancer undergo definitive treatment of the whole gland including radical prostatectomy, radiation therapy, and cryosurgery. Active surveillance is a growing alternative option for patients with documented low-volume, low-grade prostate cancer. With recent advances in software and hardware of MRI, multiparametric MRI of the prostate has been shown to improve the accuracy in detecting and characterizing clinically significant prostate cancer. Targeted biopsy is increasingly utilized to improve the yield of MR-detected, clinically significant prostate cancer and to decrease in detection of indolent prostate cancer. MR-guided targeted biopsy techniques include cognitive MR fusion TRUS biopsy, in-bore transrectal targeted biopsy using robotic transrectal device, and in-bore direct MR-guided transperineal biopsy with a software-based transperineal grid template. In addition, advances in MR compatible thermal ablation technology allow accurate focal or regional delivery of optimal thermal energy to the biopsy-proved, MRI-detected tumor, utilizing cryoablation, laser ablation, high-intensity focused ultrasound ablation under MR guidance and real-time or near simultaneous monitoring of the ablation zone. Herein we present a contemporary review of MR-guided targeted biopsy techniques of MR-detected lesions as well as MR-guided focal or regional thermal ablative therapies for localized naïve and recurrent cancerous foci of the prostate.


MRI MRI-targeted biopsy Native prostate cancer Recurrent prostate cancer Laser ablation Cryoablation Focused ultrasound ablation 


  1. 1.
    Siegel RL, Miller KD, Jemal A (2015) Cancer statistics. CA Cancer J Clin 65(1):5–29CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Murray T, et al. (2006) Cancer statistics. CA Cancer J Clin 56(2):106–130CrossRefPubMedGoogle Scholar
  3. 3.
    Potosky AL, Davis WW, Hoffman RM, et al. (2004) Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. J Natl Cancer Inst 96(18):1358–1367CrossRefPubMedGoogle Scholar
  4. 4.
    Onik G, Vaughan D, Lotenfoe R, et al. (2007) “Male lumpectomy”: focal therapy for prostate cancer using cryoablation. Urology 70(6 Suppl):16–21CrossRefPubMedGoogle Scholar
  5. 5.
    Vickers J, Ulmert D, Sjoberg D, et al. (2013) Strategy for detection of prostate cancer based on relation between prostate specific antigen at 40-55 and long term risk of metastasis: case-control study. BMJ 346:f2023CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bill-Axelson A, Holmberg I, Garmo H, et al. (2014) Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med 370:932–942CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cooner W, Mosley R, Rutherford D, et al. (1990) Prostate cancer detection in a clinical urological practice by ultrasonography, digital rectal examination and prostate specific antigen. J Urol 143:1146–1152PubMedGoogle Scholar
  8. 8.
    Flanigan R, Catalona W, Richie J, et al. (1994) Accuracy of digital rectal examination and transrectal ultrasonography in localizing prostate cancer. J Urol 152:1506–1509PubMedGoogle Scholar
  9. 9.
    Maxeiner A, Stephan C, Durmus T, et al. (2015) Added value of multiparametric ultrasonography in magnetic resonance imaging and ultrasonography fusion-guided biopsy of the prostate in patients with suspicion for prostate cancer. Urol 86(1):108–114CrossRefPubMedGoogle Scholar
  10. 10.
    Hodge K, McNeal S, Terris M, et al. (1989) Random systematic versus directed ultrasound-guided transrectal core biopsies of the prostate. J Urol 142:71–74PubMedGoogle Scholar
  11. 11.
    Eichler K, Hempel S, Wilby J, et al. (2006) Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol 175:1605–1612CrossRefPubMedGoogle Scholar
  12. 12.
    Jones J (2007) Saturation biopsy for detecting and characterizing prostate cancer. BJU Int 99:1340–1344CrossRefPubMedGoogle Scholar
  13. 13.
    Lane B, Zippe C, Abouassaly R, et al. (2008) Saturation technique does not decrease cancer detection during follow-up after initial prostate biopsy. J Urol 179:1746–1750CrossRefPubMedGoogle Scholar
  14. 14.
    Nelson A, Harvey R, Parker R, et al. (2013) Repeat prostate biopsy strategies after initial negative biopsy: meta-regression comparing cancer detection of transperineal, transrectal saturation and MRI guided biopsy. PloS One 8:e57480CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ahmed H, Emberton M, Kepmer G, et al. (2012) A biomedical engineering approach to mitigate the errors of prostate biopsy. Nat Rev Urol 9:227–231CrossRefPubMedGoogle Scholar
  16. 16.
    Salami S, Ben-Levi E, Yaskiv O, et al. (2015) In patients with a previous negative prostate biopsy and a suspicious lesion on MRI, is a 12 core biopsy still necessary in addition to a targeted biopsy? BJU Int 115:562–570CrossRefPubMedGoogle Scholar
  17. 17.
    Arumainayagam N, Ahmed H, Moore C, et al. (2013) Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard. Radiology 268:761–769CrossRefPubMedGoogle Scholar
  18. 18.
    Ahmed H, Kirkham A, Arya M, et al. (2009) Is it time to consider a role for MRI before prostate biopsy? Nav Rev Clin Oncol 6:197–206CrossRefGoogle Scholar
  19. 19.
    Moore C, Robertson N, Arsanious N, et al. (2013) Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol 63:125–140CrossRefPubMedGoogle Scholar
  20. 20.
    Penskofer T, Tuncall K, Fedorov A, et al. (2015) Transperineal in-bore 3-T MRI imaging-guided prostate biopsy: a prospective clinical observational study. Radiology 274(1):170–180CrossRefGoogle Scholar
  21. 21.
    Hamoen E, de Rooij M, Witjes J, et al. (2015) Use of the prostate imaging reporting and data system (PI-RADS) for prostate cancer detection with multiparametric magnetic resonance imaging: a diagnostic meta-analysis. Eur Urol 67:1112–1121CrossRefPubMedGoogle Scholar
  22. 22.
    Futterer J, Briganti A, De Visschere P, et al. (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68:1045–1053CrossRefPubMedGoogle Scholar
  23. 23.
    Schoots I, Petrides N, Giganti F, et al. (2015) Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol 67:627–636CrossRefPubMedGoogle Scholar
  24. 24.
    Turkbey B, Mani H, Shah V, et al. (2011) Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol 186(5):1818–1824CrossRefPubMedGoogle Scholar
  25. 25.
    Radiology ACo (2015) MR prostate imaging reporting and data system version 2.0. http://www.acrorg/Quality-Safety/Resources/PIRADS/
  26. 26.
    Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. Jama 313(4):390–397CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kitajima K, Murphy RC, Nathan MA, et al. (2014) Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med 55(2):223–232CrossRefPubMedGoogle Scholar
  28. 28.
    Futterer JJ, Gupta RT, Katz A, et al. (2014) The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int 113(2):218–227CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Reske SN, Blumstein NM, Glatting G (2008) [11C] choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 35(1):9–17CrossRefPubMedGoogle Scholar
  30. 30.
    Haffner J, Lemaitre L, Puech P, et al. (2011) Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int 108:E171–E178CrossRefPubMedGoogle Scholar
  31. 31.
    Valerio M, McCartan N, Freeman A, et al. (2015) Visually directed vs. software-based biopsy compared to transperineal template mapping biopsy in the detection of clinically significant prostate cancer. Urol Oncol 33:424.e9-424.e16CrossRefGoogle Scholar
  32. 32.
    Mozer P, Rouprêt M, Le Cossec C, et al. (2015) First round of targeted biopsies using magnetic resonance imaging/ultrasonography fusion compared with conventional transrectal ultrasonography-guided biopsies for the diagnosis of localised prostate cancer. BJU Int 115(1):50–57CrossRefPubMedGoogle Scholar
  33. 33.
    Meng X, Rosenkrantz AB, Mendhiratta N, et al. (2015) Relationship between prebiopsy multiparametric magnetic resonance imaging (MRI), biopsy indication, and MRI-ultrasound fusion-targeted prostate biopsy outcomes. Eur Urol. doi:10.1016/j.eururo.2015.06.005 PubMedGoogle Scholar
  34. 34.
    Sonn GA, Chang E, Natarajan S, et al. (2014) Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol 65:809–815CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hoeks CMA, Schouten MG, Bomers JGR, et al. (2012) Three-Tesla magnetic resonance–guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol 62:902–909CrossRefPubMedGoogle Scholar
  36. 36.
    Garmer M, Busch M, Mateiscu S, et al. (2015) Accuracy of MRI-targeted in-bore prostate biopsy according to the Gleason score with postprostatecomy histopathologic control—a targeted biopsy-only strategy with limited number of cores. Acad Radiol 22(11):1409–1418CrossRefPubMedGoogle Scholar
  37. 37.
    Elhawary H, Zivanovic A, Rea M, et al. (2006) The feasibility of MR-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre. Med Image Comput Comput Assist Interv Int Conf 9(Pt 1):519–526Google Scholar
  38. 38.
    Lagerburg V, Moerland MA, van Vulpen M, et al. (2006) A new robotic needle insertion method to minimise attendant prostate motion. Radiother Oncol 80(1):73–77CrossRefPubMedGoogle Scholar
  39. 39.
    van den Bosch MR, Moman MR, van Vulpen M, et al. (2010) MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys Med Biol 55(5):N133–N140CrossRefPubMedGoogle Scholar
  40. 40.
    Vitkin IA, Moriarty JA, Peters RD, et al. (1997) Magnetic resonance imaging of temperature changes during interstitial microwave heating: a phantom study. Med Phys 24(2):269–277CrossRefPubMedGoogle Scholar
  41. 41.
    Hynynen K, Freund WR, Cline HE, et al. (1996) A clinical, noninvasive, MR imaging-monitored ultrasound surgery method. Radiographics 16(1):185–195CrossRefPubMedGoogle Scholar
  42. 42.
    Ishihara Y, Calderon A, Watanabe H, et al. (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34(6):814–823CrossRefPubMedGoogle Scholar
  43. 43.
    Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10(6):787–800CrossRefPubMedGoogle Scholar
  44. 44.
    Young JL, Kolla SB, Pick DL, et al. (2010) In vitro, ex vivo and in vivo isotherms for renal cryotherapy. J Urol 183(2):752–758CrossRefPubMedGoogle Scholar
  45. 45.
    Baissalov R, Sandison GA, Donnelly BJ, et al. (2000) A semi-empirical treatment planning model for optimization of multiprobe cryosurgery. Phys Med Biol 45(5):1085–1098CrossRefPubMedGoogle Scholar
  46. 46.
    Gorny K, King D, Felmlee J, et al. (2011) In-vitro investigations of the urethral warmer on isotherms during interstitial cryoablations for prostate cancer. AAPM, p 3483Google Scholar
  47. 47.
    Cooperberg MR, Broering JM, Carroll PR (2010) Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol 28(7):1117–1123CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cooperberg MR, D’Amico AV, Karakiewicz PI, et al. (2013) Management of biochemical recurrence after primary treatment of prostate cancer: a systematic review of the literature. Eur Urol 64(6):905–915CrossRefPubMedGoogle Scholar
  49. 49.
    Silberstein JL, Vickers AJ, Power NE, et al. (2011) Reverse stage shift at a tertiary care center: escalating risk in men undergoing radical prostatectomy. Cancer 117(21):4855–4860CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wilt TJ, Brawer MK, Jones KM, et al. (2012) T. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367(3):203–213CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Budaus L, Spethmann J, Isbarn H, et al. (2011) Inverse stage migration in patients undergoing radical prostatectomy: results of 8916 European patients treated within the last decade. BJU Int 108(8):1256–1261CrossRefPubMedGoogle Scholar
  52. 52.
    van den Bos W, Pinto PA, de la Rosette JJ (2014) Imaging modalities in focal therapy: patient selection, treatment guidance, and follow-up. Curr Opin Urol 24(3):218–224CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Stephenson AJ, Slawin KM (2004) The value of radiotherapy in treating recurrent prostate cancer after radical prostatectomy. Nat Clin Pract Urol 1(2):90–96CrossRefPubMedGoogle Scholar
  54. 54.
    Partin AW, Pearson JD, Landis PK, et al. (1994) Evaluation of serum prostate-specific antigen velocity after radical prostatectomy to distinguish local recurrence from distant metastases. Urology 43(5):649–659CrossRefPubMedGoogle Scholar
  55. 55.
    Uchida T, Shoji S, Nakano M, et al. (2011) High-intensity focused ultrasound as salvage therapy for patients with recurrent prostate cancer after external beam radiation, brachytherapy or proton therapy. BJU Int 107(3):378–382CrossRefPubMedGoogle Scholar
  56. 56.
    Hakimi AA, Feder M, Ghavamian R (2007) Minimally invasive approaches to prostate cancer: a review of the current literature. Urol J 4(3):130–137PubMedGoogle Scholar
  57. 57.
    Menon M, Tewari A, Peabody JO, et al. (2004) Vattikuti Institute prostatectomy, a technique of robotic radical prostatectomy for management of localized carcinoma of the prostate: experience of over 1100 cases. Urol Clin N Am 31(4):701–717CrossRefGoogle Scholar
  58. 58.
    Polascik TJ (2014) How to select the right patients for focal therapy of prostate cancer? Curr Opin Urol 24(3):203–208CrossRefPubMedGoogle Scholar
  59. 59.
    Katz AE (2009) Prostate cryotherapy: current status. Curr Opin Urol 19(2):177–181CrossRefPubMedGoogle Scholar
  60. 60.
    Lee T, Mendhiratta N, Sperling D, Lepor H (2014) Focal laser ablation for localized prostate cancer: principles, clinical trials, and our initial experience. Rev Urol 16(2):55–66PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rogenhofer S, Ganzer R, Lunz J-C, et al. (2008) Eight years’ experience with high-intensity focused ultrasonography for treatment of localized prostate cancer. Urology 72(6):1329–1333 ((discussion 1333–1324))CrossRefPubMedGoogle Scholar
  62. 62.
    Tacke J, Adam G, Haage P, et al. (2001) MR-guided percutaneous cryotherapy of the liver: in vivo evaluation with histologic correlation in an animal model. J Magn Reson Imaging 13(1):50–56CrossRefPubMedGoogle Scholar
  63. 63.
    Tuncali K, Morrison PR, Tatli S, et al. (2006) MRI-guided percutaneous cryoablation of renal tumors: use of external manual displacement of adjacent bowel loops. Eur J Radiol 59(2):198–202CrossRefPubMedGoogle Scholar
  64. 64.
    Woodrum DA, Kawashima A, Karnes RJ, et al. (2013) Magnetic resonance imaging-guided cryoablation of recurrent prostate cancer after radical prostatectomy: initial single institution experience. Urology 82(4):870–875CrossRefPubMedGoogle Scholar
  65. 65.
    Gangi A, Tsoumakidou G, Abdelli O, et al. (2012) Percutaneous MR-guided cryoablation of prostate cancer: initial experience. Eur Radiol 22(8):1829–1835CrossRefPubMedGoogle Scholar
  66. 66.
    Josan S, Bouley DM, van den Bosch M, et al. (2009) MRI-guided cryoablation: in vivo assessment of focal canine prostate cryolesions. J Magn Reson Imaging 30(1):169–176CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    van den Bosch MA, Josan S, Bouley DM, Chen J, et al. (2009) MR imaging-guided percutaneous cryoablation of the prostate in an animal model: in vivo imaging of cryoablation-induced tissue necrosis with immediate histopathologic correlation. J Vasc Interv Radiol 20(2):252–258CrossRefPubMedGoogle Scholar
  68. 68.
    McNichols RJ, Gowda A, Kangasniemi M, et al. (2004) MR thermometry-based feedback control of laser interstitial thermal therapy at 980 nm. Lasers Surg Med 34(1):48–55CrossRefPubMedGoogle Scholar
  69. 69.
    McNichols RJ, Gowda A, Gelnett MD, et al. (2005) Percutaneous MRI-guided laser thermal therapy in canine prostate. In: SPIE, San Jose, pp 214–225Google Scholar
  70. 70.
    Stafford RJ, Shetty A, Elliott AM, et al. (2010) Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol 184(4):1514–1520CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Woodrum DA, Gorny KR, Mynderse LA, et al. (2010) Feasibility of 3.0T magnetic resonance imaging-guided laser ablation of a cadaveric prostate. Urology 75(6):1514.e1511-1516Google Scholar
  72. 72.
    Raz O, Haider MA, Davidson SR, et al. (2010) Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol 58(1):173–177CrossRefPubMedGoogle Scholar
  73. 73.
    Thuroff S, Chaussy C, Vallancien G, et al. (2003) High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study. J Endourol 17(8):673–677CrossRefPubMedGoogle Scholar
  74. 74.
    Gelet A, Chapelon JY, Bouvier R, et al. (2000) Transrectal high-intensity focused ultrasound: minimally invasive therapy of localized prostate cancer. J Endourol 14(6):519–528CrossRefPubMedGoogle Scholar
  75. 75.
    Gelet A, Chapelon JY, Bouvier R, et al. (2001) Transrectal high intensity focused ultrasound for the treatment of localized prostate cancer: factors influencing the outcome. Eur Urol 40(2):124–129CrossRefPubMedGoogle Scholar
  76. 76.
    Brandeis J, Pashos CL, Henning JM, et al. (2000) A nationwide charge comparison of the principal treatments for early stage prostate carcinoma. Cancer 89(8):1792–1799CrossRefPubMedGoogle Scholar
  77. 77.
    Moul JW (2000) Prostate specific antigen only progression of prostate cancer. J Urol 163(6):1632–1642CrossRefPubMedGoogle Scholar
  78. 78.
    Sella T, Schwartz LH, Swindle PW, et al. (2004) Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 231(2):379–385CrossRefPubMedGoogle Scholar
  79. 79.
    Agarwal PK, Sadetsky N, Konety BR, Cancer of the Prostate Strategic Urological Research E, et al. (2008) Treatment failure after primary and salvage therapy for prostate cancer: likelihood, patterns of care, and outcomes. Cancer 112(2):307–314CrossRefPubMedGoogle Scholar
  80. 80.
    Kuban DA, Thames HD, Levy LB, et al. (2003) Long-term multi-institutional analysis of stage T1-T2 prostate cancer treated with radiotherapy in the PSA era. Int J Radiat Oncol Biol Phys 57(4):915–928CrossRefPubMedGoogle Scholar
  81. 81.
    Woodrum DA, Mynderse LA, Gorny KR, et al. (2011) 3.0T MR-guided laser ablation of a prostate cancer recurrence in the postsurgical prostate bed. J Vasc Interv Radiol 22(7):929–934CrossRefPubMedGoogle Scholar
  82. 82.
    Porter CAt, Woodrum DA, Callstrom MR, et al. (2010) MRI after technically successful renal cryoablation: early contrast enhancement as a common finding. AJR Am J Roentgenol 194(3):790–793CrossRefPubMedGoogle Scholar
  83. 83.
    Rieke V, Kinsey AM, Ross AB, et al. (2007) Referenceless MR thermometry for monitoring thermal ablation in the prostate. IEEE Trans Med Imaging 26(6):813–821CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Rieke V, Vigen KK, Sommer G, et al. (2004) Referenceless PRF shift thermometry. Magn Reson Med 51(6):1223–1231CrossRefPubMedGoogle Scholar
  85. 85.
    Gage AA, Baust J (1998) Mechanisms of tissue injury in cryosurgery. Cryobiology 37(3):171–186CrossRefPubMedGoogle Scholar
  86. 86.
    Favazza CP, Gorny KR, King DM, et al. (2014) An investigation of the effects from a urethral warming system on temperature distributions during cryoablation treatment of the prostate: a phantom study. Cryobiology 69(1):128–133CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • David A. Woodrum
    • 1
  • Akira Kawashima
    • 1
  • Krzysztof R. Gorny
    • 1
  • Lance A. Mynderse
    • 2
  1. 1.Department of RadiologyMayo ClinicRochesterUSA
  2. 2.Department of UrologyMayo ClinicRochesterUSA

Personalised recommendations