Advertisement

Abdominal Radiology

, Volume 41, Issue 3, pp 444–451 | Cite as

Magnetic resonance safety

  • Steffen SammetEmail author
Article

Abstract

Magnetic resonance imaging (MRI) has a superior soft-tissue contrast compared to other radiological imaging modalities and its physiological and functional applications have led to a significant increase in MRI scans worldwide. A comprehensive MRI safety training to protect patients and other healthcare workers from potential bio-effects and risks of the magnetic fields in an MRI suite is therefore essential. The knowledge of the purpose of safety zones in an MRI suite as well as MRI appropriateness criteria is important for all healthcare professionals who will work in the MRI environment or refer patients for MRI scans. The purpose of this article is to give an overview of current magnetic resonance safety guidelines and discuss the safety risks of magnetic fields in an MRI suite including forces and torque of ferromagnetic objects, tissue heating, peripheral nerve stimulation, and hearing damages. MRI safety and compatibility of implanted devices, MRI scans during pregnancy, and the potential risks of MRI contrast agents will also be discussed, and a comprehensive MRI safety training to avoid fatal accidents in an MRI suite will be presented.

Keywords

Magnetic resonance imaging (MRI) Safety Magnetic fields Implants Pregnancy Contrast agents 

Notes

Acknowledgments

Steffen Sammet, M.D., Ph.D., DABR, DABMRS, FAMP was funded by the National Institute of Neurological Disorders and Stroke (R25NS080949), National Cancer Institute Education and Career Development program R25 Cancer Nanotechnology in Imaging and Radiotherapy (R25CA132822), the Cancer Research Foundation, the University of Chicago Comprehensive Cancer Center, and Philips Healthcare.

References

  1. 1.
    Chakeres DW, de Vocht F (2005) Static magnetic field effects on human subjects related to magnetic resonance imaging systems. Prog Biophys Mol Biol 87(2–3):255–265. doi: 10.1016/j.pbiomolbio.2004.08.012 PubMedCrossRefGoogle Scholar
  2. 2.
    Feychting M (2005) Health effects of static magnetic fields—a review of the epidemiological evidence. Prog Biophys Mol Biol 87(2–3):241–246. doi: 10.1016/j.pbiomolbio.2004.08.007 PubMedCrossRefGoogle Scholar
  3. 3.
    Hipp E, Sammet S, Straus C (2012) MR safety standards for medical students nationwide. In: Proceedings of the 19th Annual Meeting of ISMRM, Melbourne, Australia (abstract 2731)Google Scholar
  4. 4.
    Shellock FG (2001) Magnetic resonance procedures: health effects and safety. Boca Raton: CRC PressGoogle Scholar
  5. 5.
    Karpowicz J, Gryz K (2006) Health risk assessment of occupational exposure to a magnetic field from magnetic resonance imaging devices. Int J Occup Saf Ergon JOSE 12(2):155–167PubMedCrossRefGoogle Scholar
  6. 6.
    ASTM F2052-00 (2013) Standard Test Method for Measurement of Magnetically Induced Displacement Force on Passive Implants in the Magnetic Resonance Environment. West Conshohocken: ASTM InternationalGoogle Scholar
  7. 7.
    Sammet CL, Yang X, Wassenaar PA, et al. (2013) RF-related heating assessment of extracranial neurosurgical implants at 7T. Magn Reson Imaging 31(6):1029–1034. doi: 10.1016/j.mri.2012.10.025 PubMedCrossRefGoogle Scholar
  8. 8.
    Kanal E, Barkovich AJ, Bell C, et al. (2013) ACR guidance document on MR safe practices: 2013. J Magn Reson Imaging JMRI 37(3):501–530. doi: 10.1002/jmri.24011 PubMedCrossRefGoogle Scholar
  9. 9.
    Sammet S (2013) Implementation of a comprehensive MR safety course for medical students. In: Proceedings of the 20th Annual Meeting of ISMRM, Salt Lake City (abstract 4071)Google Scholar
  10. 10.
    Shellock FG, Kanal E (1996) Magnetic resonance: bioeffects, safety, and patient management, 2nd edn. Philadelphia: Lippincott-RavenGoogle Scholar
  11. 11.
    Simmons A, Hakansson K (2011) Magnetic resonance safety. Methods Mol Biol 711:17–28. doi: 10.1007/978-1-61737-992-5_2 PubMedCrossRefGoogle Scholar
  12. 12.
    Hansson Mild K, Hand J, Hietanen M, et al. (2013) Exposure classification of MRI workers in epidemiological studies. Bioelectromagnetics 34(1):81–84. doi: 10.1002/bem.21728 PubMedCrossRefGoogle Scholar
  13. 13.
    Sammet S, Sammet CL (2015) Implementation of a comprehensive MR safety course for medical students. J Magn Reson Imaging JMRI 42(6):1478–1486. doi: 10.1002/jmri.24993 PubMedCrossRefGoogle Scholar
  14. 14.
    Tsai LL, Grant AK, Mortele KJ, Kung JW, Smith MP (2015) A practical guide to MR imaging safety: what radiologists need to know. Radiographics 35(6):1722–1737. doi: 10.1148/rg.2015150108 PubMedCrossRefGoogle Scholar
  15. 15.
    Ghodbane S, Lahbib A, Sakly M, Abdelmelek H (2013) Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. BioMed Res Int 2013:602987. doi: 10.1155/2013/602987 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hartwig V, Giovannetti G, Vanello N, et al. (2009) Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health 6(6):1778–1798. doi: 10.3390/ijerph6061778 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Glover PM, Cavin I, Qian W, Bowtell R, Gowland PA (2007) Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28(5):349–361. doi: 10.1002/bem.20316 PubMedCrossRefGoogle Scholar
  18. 18.
    Heinrich A, Szostek A, Nees F, et al. (2011) Effects of static magnetic fields on cognition, vital signs, and sensory perception: a meta-analysis. J Magn Reson Imaging JMRI 34(4):758–763. doi: 10.1002/jmri.22720 PubMedCrossRefGoogle Scholar
  19. 19.
    International Electrotechnical Commission (IEC) (2002) Medical electrical equipment, particular requirements for the safety of magnetic resonance equipment for medical diagnosis. International Standard IEC 60601-2-33. Accessed 1 Mar 2016Google Scholar
  20. 20.
    Atkinson IC, Renteria L, Burd H, Pliskin NH, Thulborn KR (2007) Safety of human MRI at static fields above the FDA 8 T guideline: sodium imaging at 9.4 T does not affect vital signs or cognitive ability. J Magn Reson Imaging JMRI 26(5):1222–1227. doi: 10.1002/jmri.21150 PubMedCrossRefGoogle Scholar
  21. 21.
    Atkinson IC, Sonstegaard R, Pliskin NH, Thulborn KR (2010) Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T. J Magn Reson Imaging JMRI 32(1):82–87. doi: 10.1002/jmri.22221 PubMedCrossRefGoogle Scholar
  22. 22.
    Besson JA, Foreman EI, Eastwood LM, Smith FW, Ashcroft GW (1984) Cognitive evaluation following NMR imaging of the brain. J Neurol Neurosurg Psychiatry 47(3):314–316PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Brockway JP, Bream PR Jr (1992) Does memory loss occur after MR imaging? J Magn Reson Imaging JMRI 2(6):721–728PubMedCrossRefGoogle Scholar
  24. 24.
    Brody AS, Embury SH, Mentzer WC, Winkler ML, Gooding CA (1988) Preservation of sickle cell blood-flow patterns during MR imaging: an in vivo study. AJR Am J Roentgenol 151(1):139–141. doi: 10.2214/ajr.151.1.139 PubMedCrossRefGoogle Scholar
  25. 25.
    Brody AS, Sorette MP, Gooding CA, et al. (1985) AUR memorial Award. Induced alignment of flowing sickle erythrocytes in a magnetic field. A preliminary report. Invest Radiol 20(6):560–566PubMedCrossRefGoogle Scholar
  26. 26.
    Cavin ID, Glover PM, Bowtell RW, Gowland PA (2007) Thresholds for perceiving metallic taste at high magnetic field. J Magn Reson Imaging JMRI 26(5):1357–1361. doi: 10.1002/jmri.21153 PubMedCrossRefGoogle Scholar
  27. 27.
    de Vocht F, Stevens T, Glover P, et al. (2007) Cognitive effects of head-movements in stray fields generated by a 7 Tesla whole-body MRI magnet. Bioelectromagnetics 28(4):247–255. doi: 10.1002/bem.20311 PubMedCrossRefGoogle Scholar
  28. 28.
    de Vocht F, Stevens T, van Wendel-de-Joode B, Engels H, Kromhout H (2006) Acute neurobehavioral effects of exposure to static magnetic fields: analyses of exposure-response relations. J Magn Reson Imaging JMRI 23(3):291–297. doi: 10.1002/jmri.20510 PubMedCrossRefGoogle Scholar
  29. 29.
    Franco G, Mora E, Perduri R (2010) Focusing ethical dilemmas of evidence-based practice in SMF-exposed MRI-workers: a qualitative analysis. Int Arch Occup Environ Health 83(4):417–421. doi: 10.1007/s00420-009-0476-8 PubMedCrossRefGoogle Scholar
  30. 30.
    Fuentes MA, Trakic A, Wilson SJ, Crozier S (2008) Analysis and measurements of magnetic field exposures for healthcare workers in selected MR environments. IEEE Trans Biomed Eng 55(4):1355–1364. doi: 10.1109/TBME.2007.913410 PubMedCrossRefGoogle Scholar
  31. 31.
    Glover PM (2009) Interaction of MRI field gradients with the human body. Phys Med Biol 54(21):R99–R115. doi: 10.1088/0031-9155/54/21/R01 PubMedCrossRefGoogle Scholar
  32. 32.
    Heinrich A, Szostek A, Meyer P, et al. (2013) Cognition and sensation in very high static magnetic fields: a randomized case-crossover study with different field strengths. Radiology 266(1):236–245. doi: 10.1148/radiol.12112172 PubMedCrossRefGoogle Scholar
  33. 33.
    Hong CZ, Shellock FG (1990) Short-term exposure to a 1.5 tesla static magnetic field does not affect somato-sensory-evoked potentials in man. Magn Reson Imaging 8(1):65–69PubMedCrossRefGoogle Scholar
  34. 34.
    Hsieh CH, Lee MC, Tsai-Wu JJ, et al. (2008) Deleterious effects of MRI on chondrocytes. Osteoarthr Cartil 16(3):343–351. doi: 10.1016/j.joca.2007.07.001 PubMedCrossRefGoogle Scholar
  35. 35.
    Innis NK, Ossenkopp KP, Prato FS, Sestini E (1986) Behavioral effects of exposure to nuclear magnetic resonance imaging: II. Spatial memory tests. Magn Reson Imaging 4(4):281–284PubMedCrossRefGoogle Scholar
  36. 36.
    Kangarlu A, Burgess RE, Zhu H, et al. (1999) Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging 17(10):1407–1416PubMedCrossRefGoogle Scholar
  37. 37.
    Kannala S, Toivo T, Alanko T, Jokela K (2009) Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners. Phys Med Biol 54(7):2243–2257. doi: 10.1088/0031-9155/54/7/026 PubMedCrossRefGoogle Scholar
  38. 38.
    Karpowicz J, Gryz K, Politanski P, Zmyslony M (2011) Exposure to static magnetic field and health hazards during the operation of magnetic resonance scanners. Med Pr 62(3):309–321PubMedGoogle Scholar
  39. 39.
    Karpowicz J, Zradzinski P, Gryz K (2012) Measures of occupational exposure to time-varying low frequency magnetic fields of non-uniform spatial distribution in the light of international guidelines and electrodynamic exposure effects in the human body. Med Pr 63(3):317–328PubMedGoogle Scholar
  40. 40.
    Kay HH, Herfkens RJ, Kay BK (1988) Effect of magnetic resonance imaging on Xenopus laevis embryogenesis. Magn Reson Imaging 6(5):501–506PubMedCrossRefGoogle Scholar
  41. 41.
    Laszlo J, Gyires K (2009) 3 T homogeneous static magnetic field of a clinical MR significantly inhibits pain in mice. Life Sci 84(1–2):12–17. doi: 10.1016/j.lfs.2008.10.009 PubMedCrossRefGoogle Scholar
  42. 42.
    McRobbie DW (2012) Occupational exposure in MRI. Br J Radiol 85(1012):293–312. doi: 10.1259/bjr/30146162 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Muller S, Hotz M (1990) Human brainstem auditory evoked potentials (BAEP) before and after MR examinations. Magn Reson Med 16(3):476–480PubMedCrossRefGoogle Scholar
  44. 44.
    Ossenkopp KP, Innis NK, Prato FS, Sestini E (1986) Behavioral effects of exposure to nuclear magnetic resonance imaging: I. Open-field behavior and passive avoidance learning in rats. Magn Reson Imaging 4(4):275–280PubMedCrossRefGoogle Scholar
  45. 45.
    Patel M, Williamsom RA, Dorevitch S, Buchanan S (2008) Pilot study investigating the effect of the static magnetic field from a 9.4-T MRI on the vestibular system. J Occup Environ Med 50(5):576–583. doi: 10.1097/JOM.0b013e318162f5d6 PubMedCrossRefGoogle Scholar
  46. 46.
    Prasad N, Wright DA, Ford JJ, Thornby JI (1990) Safety of 4-T MR imaging: study of effects on developing frog embryos. Radiology 174(1):251–253. doi: 10.1148/radiology.174.1.2294557 PubMedCrossRefGoogle Scholar
  47. 47.
    Sakurai T, Terashima S, Miyakoshi J (2009) Effects of strong static magnetic fields used in magnetic resonance imaging on insulin-secreting cells. Bioelectromagnetics 30(1):1–8. doi: 10.1002/bem.20433 PubMedCrossRefGoogle Scholar
  48. 48.
    Schaap K, Christopher-De Vries Y, Slottje P, Kromhout H (2013) Inventory of MRI applications and workers exposed to MRI-related electromagnetic fields in the Netherlands. Eur J Radiol 82(12):2279–2285. doi: 10.1016/j.ejrad.2013.07.023 PubMedCrossRefGoogle Scholar
  49. 49.
    Schenck JF (1992) Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI. Ann N Y Acad Sci 649:285–301PubMedCrossRefGoogle Scholar
  50. 50.
    Schenck JF (1998) MR safety at high magnetic fields. Magn Reson Imaging Clin N Am 6(4):715–730PubMedGoogle Scholar
  51. 51.
    Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging JMRI 12(1):2–19PubMedCrossRefGoogle Scholar
  52. 52.
    Schenck JF, Dumoulin CL, Redington RW, et al. (1992) Human exposure to 4.0-Tesla magnetic fields in a whole-body scanner. Med Phys 19(4):1089–1098PubMedCrossRefGoogle Scholar
  53. 53.
    Schlamann M, Voigt MA, Maderwald S, et al. (2010) Exposure to high-field MRI does not affect cognitive function. J Magn Reson Imaging JMRI 31(5):1061–1066. doi: 10.1002/jmri.22065 PubMedCrossRefGoogle Scholar
  54. 54.
    Schlamann M, Yoon MS, Maderwald S, et al. (2010) Short term effects of magnetic resonance imaging on excitability of the motor cortex at 1.5T and 7T. Acad Radiol 17(3):277–281. doi: 10.1016/j.acra.2009.10.004 PubMedCrossRefGoogle Scholar
  55. 55.
    Schwartz JL, Crooks LE (1982) NMR imaging produces no observable mutations or cytotoxicity in mammalian cells. AJR Am J Roentgenol 139(3):583–585. doi: 10.2214/ajr.139.3.583 PubMedCrossRefGoogle Scholar
  56. 56.
    Schwenzer NF, Bantleon R, Maurer B, et al. (2007) In vitro evaluation of magnetic resonance imaging at 3.0 tesla on clonogenic ability, proliferation, and cell cycle in human embryonic lung fibroblasts. Invest Radiol 42(4):212–217. doi: 10.1097/01.rli.0000255831.40115.83 PubMedCrossRefGoogle Scholar
  57. 57.
    Schwenzer NF, Bantleon R, Maurer B, et al. (2007) Do static or time-varying magnetic fields in magnetic resonance imaging (3.0 T) alter protein-gene expression?-A study on human embryonic lung fibroblasts. J Magn Reson Imaging JMRI 26(5):1210–1215. doi: 10.1002/jmri.21145 PubMedCrossRefGoogle Scholar
  58. 58.
    Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232(3):635–652. doi: 10.1148/radiol.2323030830 PubMedCrossRefGoogle Scholar
  59. 59.
    Shellock FG, Schaefer DJ, Crues JV (1989) Exposure to a 1.5-T static magnetic field does not alter body and skin temperatures in man. Magn Reson Med 11(3):371–375PubMedCrossRefGoogle Scholar
  60. 60.
    Shellock FG, Schaefer DJ, Gordon CJ (1986) Effect of a 1.5 T static magnetic field on body temperature of man. Magn Reson Med 3(4):644–647PubMedCrossRefGoogle Scholar
  61. 61.
    Short WO, Goodwill L, Taylor CW, et al. (1992) Alteration of human tumor cell adhesion by high-strength static magnetic fields. Invest Radiol 27(10):836–840PubMedCrossRefGoogle Scholar
  62. 62.
    Silva AK, Silva EL, Egito ES, Carrico AS (2006) Safety concerns related to magnetic field exposure. Radiat Environ Biophys 45(4):245–252. doi: 10.1007/s00411-006-0065-0 PubMedCrossRefGoogle Scholar
  63. 63.
    Tomasi DG, Wang R (2007) Induced magnetic field gradients and forces in the human head in MRI. J Magn Reson Imaging JMRI 26(5):1340–1345. doi: 10.1002/jmri.21143 PubMedCrossRefGoogle Scholar
  64. 64.
    Toyomaki A, Yamamoto T (2007) Observation of changes in neural activity due to the static magnetic field of an MRI scanner. J Magn Reson Imaging JMRI 26(5):1216–1221. doi: 10.1002/jmri.21151 PubMedCrossRefGoogle Scholar
  65. 65.
    Valiron O, Peris L, Rikken G, et al. (2005) Cellular disorders induced by high magnetic fields. J Magn Reson Imaging JMRI 22(3):334–340. doi: 10.1002/jmri.20398 PubMedCrossRefGoogle Scholar
  66. 66.
    van Nierop LE, Slottje P, van Zandvoort MJ, de Vocht F, Kromhout H (2012) Effects of magnetic stray fields from a 7 tesla MRI scanner on neurocognition: a double-blind randomised crossover study. Occup Environ Med 69(10):759–766. doi: 10.1136/oemed-2011-100468 PubMedCrossRefGoogle Scholar
  67. 67.
    Vaughan T, DelaBarre L, Snyder C, et al. (2006) 9.4T human MRI: preliminary results. Magn Reson Med 56(6):1274–1282. doi: 10.1002/mrm.21073 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Vogl TJ, Paulus W, Fuchs A, Krafczyk S, Lissner J (1991) Influence of magnetic resonance imaging on evoked potentials and nerve conduction velocities in humans. Invest Radiol 26(5):432–437PubMedCrossRefGoogle Scholar
  69. 69.
    Weintraub MI, Khoury A, Cole SP (2007) Biologic effects of 3 Tesla (T) MR imaging comparing traditional 1.5 T and 0.6 T in 1023 consecutive outpatients. J Neuroimaging 17(3):241–245. doi: 10.1111/j.1552-6569.2007.00118.x PubMedCrossRefGoogle Scholar
  70. 70.
    Weiss J, Herrick RC, Taber KH, Contant C, Plishker GA (1992) Bio-effects of high magnetic fields: a study using a simple animal model. Magn Reson Imaging 10(4):689–694PubMedCrossRefGoogle Scholar
  71. 71.
    Yamaguchi-Sekino S, Nakai T, Imai S, Izawa S, Okuno T (2013) Occupational exposure levels of static magnetic field during routine MRI examination in 3 T MR system. Bioelectromagnetics . doi: 10.1002/bem.21817 PubMedGoogle Scholar
  72. 72.
    Yamaguchi-Sekino S, Sekino M, Ueno S (2011) Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields. Magn Reson Med Sci 10(1):1–10PubMedCrossRefGoogle Scholar
  73. 73.
    Yuh WT, Fisher DJ, Shields RK, Ehrhardt JC, Shellock FG (1992) Phantom limb pain induced in amputee by strong magnetic fields. J Magn Reson Imaging JMRI 2(2):221–223PubMedCrossRefGoogle Scholar
  74. 74.
    Abart J, Eberhardt K, Fischer H, et al. (1997) Peripheral nerve stimulation by time-varying magnetic fields. J Comput Assist Tomogr 21(4):532–538PubMedCrossRefGoogle Scholar
  75. 75.
    Alon L, Deniz CM, Brown R, Sodickson DK, Zhu Y (2013) Method for in situ characterization of radiofrequency heating in parallel transmit MRI. Magn Reson Med 69(5):1457–1465. doi: 10.1002/mrm.24374 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Atalar E (2005) Radiofrequency safety for interventional MRI procedures. Acad Radiol 12(9):1149–1157. doi: 10.1016/j.acra.2005.06.007 PubMedCrossRefGoogle Scholar
  77. 77.
    Boss A, Graf H, Berger A, et al. (2007) Tissue warming and regulatory responses induced by radio frequency energy deposition on a whole-body 3-Tesla magnetic resonance imager. J Magn Reson Imaging JMRI 26(5):1334–1339. doi: 10.1002/jmri.21156 PubMedCrossRefGoogle Scholar
  78. 78.
    Bottomley PA (2008) Turning up the heat on MRI. J Am Coll Radiol JACR 5(7):853–855. doi: 10.1016/j.jacr.2008.04.003 PubMedCrossRefGoogle Scholar
  79. 79.
    Bottomley PA, Edelstein WA (1981) Power deposition in whole-body NMR imaging. Med Phys 8(4):510–512PubMedCrossRefGoogle Scholar
  80. 80.
    Budinger TF (1981) Nuclear magnetic resonance (NMR) in vivo studies: known thresholds for health effects. J Comput Assist Tomogr 5(6):800–811PubMedCrossRefGoogle Scholar
  81. 81.
    Collins CM (2009) Numerical field calculations considering the human subject for engineering and safety assurance in MRI. NMR Biomed 22(9):919–926. doi: 10.1002/nbm.1251 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    de Greef M, Ipek O, Raaijmakers AJ, Crezee J, van den Berg CA (2013) Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head. Magn Reson Med 69(5):1476–1485. doi: 10.1002/mrm.24378 PubMedCrossRefGoogle Scholar
  83. 83.
    Drinkwater BL, Horvath SM (1979) Heat tolerance and aging. Med Sci Sports 11(1):49–55PubMedGoogle Scholar
  84. 84.
    El-Sharkawy AM, Qian D, Bottomley PA, Edelstein WA (2012) A multichannel, real-time MRI RF power monitor for independent SAR determination. Med Phys 39(5):2334–2341. doi: 10.1118/1.3700169 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gorny KR, Bernstein MA, Felmlee JP, et al. (2008) Calorimetric calibration of head coil SAR estimates displayed on a clinical MR scanner. Phys Med Biol 53(10):2565–2576. doi: 10.1088/0031-9155/53/10/008 PubMedCrossRefGoogle Scholar
  86. 86.
    Gowland PA, De Wilde J (2008) Temperature increase in the fetus due to radio frequency exposure during magnetic resonance scanning. Phys Med Biol 53(21):L15–18. doi: 10.1088/0031-9155/53/21/L01 PubMedCrossRefGoogle Scholar
  87. 87.
    Graesslin I, Homann H, Biederer S, et al. (2012) A specific absorption rate prediction concept for parallel transmission MR. Magn Reson Med 68(5):1664–1674. doi: 10.1002/mrm.24138 PubMedCrossRefGoogle Scholar
  88. 88.
    Hand JW, Li Y, Hajnal JV (2010) Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure. Phys Med Biol 55(4):913–930. doi: 10.1088/0031-9155/55/4/001 PubMedCrossRefGoogle Scholar
  89. 89.
    Hand JW, Li Y, Thomas EL, Rutherford MA, Hajnal JV (2006) Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med 55(4):883–893. doi: 10.1002/mrm.20824 PubMedCrossRefGoogle Scholar
  90. 90.
    International Commission on Non-Ionizing Radiation P (2004) Medical magnetic resonance (MR) procedures: protection of patients. Health Phys 87(2):197–216CrossRefGoogle Scholar
  91. 91.
    Israel M, Zaryabova V, Ivanova M (2013) Electromagnetic field occupational exposure: non-thermal vs. thermal effects. Electromagn Biol Med 32(2):145–154. doi: 10.3109/15368378.2013.776349 PubMedCrossRefGoogle Scholar
  92. 92.
    Jauchem JR (1985) Effects of drugs on thermal responses to microwaves. Gen Pharmacol 16(4):307–310PubMedCrossRefGoogle Scholar
  93. 93.
    Kangarlu A, Shellock FG, Chakeres DW (2003) 8.0-Tesla human MR system: temperature changes associated with radiofrequency-induced heating of a head phantom. J Magn Reson Imaging JMRI 17(2):220–226. doi: 10.1002/jmri.10236 PubMedCrossRefGoogle Scholar
  94. 94.
    Kikuchi S, Saito K, Takahashi M, Ito K (2010) Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging. Phys Med Biol 55(8):2411–2426. doi: 10.1088/0031-9155/55/8/018 PubMedCrossRefGoogle Scholar
  95. 95.
    Murbach M, Neufeld E, Kainz W, Pruessmann KP, Kuster N (2013) Whole-body and local RF absorption in human models as a function of anatomy and position within 1.5T MR body coil. Magn Reson Med . doi: 10.1002/mrm.24690 PubMedGoogle Scholar
  96. 96.
    Neufeld E, Gosselin MC, Murbach M, et al. (2011) Analysis of the local worst-case SAR exposure caused by an MRI multi-transmit body coil in anatomical models of the human body. Phys Med Biol 56(15):4649–4659. doi: 10.1088/0031-9155/56/15/002 PubMedCrossRefGoogle Scholar
  97. 97.
    Oh S, Webb AG, Neuberger T, Park B, Collins CM (2010) Experimental and numerical assessment of MRI-induced temperature change and SAR distributions in phantoms and in vivo. Magn Reson Med 63(1):218–223. doi: 10.1002/mrm.22174 PubMedPubMedCentralGoogle Scholar
  98. 98.
    Rowell LB (1983) Cardiovascular aspects of human thermoregulation. Circ Res 52(4):367–379PubMedCrossRefGoogle Scholar
  99. 99.
    Schaefer DJ (1998) Safety aspects of radiofrequency power deposition in magnetic resonance. Magn Reson Imaging Clin N Am 6(4):775–789PubMedGoogle Scholar
  100. 100.
    Shellock FG (2000) Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging JMRI 12(1):30–36PubMedCrossRefGoogle Scholar
  101. 101.
    Shellock FG, Crues JV (1987) Temperature, heart rate, and blood pressure changes associated with clinical MR imaging at 1.5 T. Radiology 163(1):259–262. doi: 10.1148/radiology.163.1.3823445 PubMedCrossRefGoogle Scholar
  102. 102.
    Shellock FG, Crues JV (1988) Corneal temperature changes induced by high-field-strength MR imaging with a head coil. Radiology 167(3):809–811. doi: 10.1148/radiology.167.3.3363146 PubMedCrossRefGoogle Scholar
  103. 103.
    Shellock FG, Crues JV (1988) Temperature changes caused by MR imaging of the brain with a head coil. AJNR Am J Neuroradiol 9(2):287–291PubMedGoogle Scholar
  104. 104.
    Shellock FG, Rothman B, Sarti D (1990) Heating of the scrotum by high-field-strength MR imaging. AJR Am J Roentgenol 154(6):1229–1232. doi: 10.2214/ajr.154.6.2110733 PubMedCrossRefGoogle Scholar
  105. 105.
    Shellock FG, Schaefer DJ, Crues JV (1989) Alterations in body and skin temperatures caused by magnetic resonance imaging: is the recommended exposure for radiofrequency radiation too conservative? Br J Radiol 62(742):904–909PubMedCrossRefGoogle Scholar
  106. 106.
    Shellock FG, Schaefer DJ, Kanal E (1994) Physiologic responses to an MR imaging procedure performed at a specific absorption rate of 6.0 W/kg. Radiology 192(3):865–868. doi: 10.1148/radiology.192.3.8058962 PubMedCrossRefGoogle Scholar
  107. 107.
    Shellock FG, Schatz CJ (1992) Increased corneal temperature caused by MR imaging of the eye with a dedicated local coil. Radiology 185(3):697–699. doi: 10.1148/radiology.185.3.1438747 PubMedCrossRefGoogle Scholar
  108. 108.
    Shrivastava D, Hanson T, Kulesa J, et al. (2009) Radio frequency heating at 9.4T (400.2 MHz): in vivo thermoregulatory temperature response in swine. Magn Reson Med 62(4):888–895. doi: 10.1002/mrm.22072 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Shrivastava D, Hanson T, Kulesa J, et al. (2011) Radiofrequency heating in porcine models with a “large” 32 cm internal diameter, 7 T (296 MHz) head coil. Magn Reson Med 66(1):255–263. doi: 10.1002/mrm.22790 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Shrivastava D, Hanson T, Schlentz R, et al. (2008) Radiofrequency heating at 9.4T: in vivo temperature measurement results in swine. Magn Reson Med 59(1):73–78. doi: 10.1002/mrm.21425 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Shuman WP, Haynor DR, Guy AW, et al. (1988) Superficial- and deep-tissue temperature increases in anesthetized dogs during exposure to high specific absorption rates in a 1.5-T MR imager. Radiology 167(2):551–554. doi: 10.1148/radiology.167.2.3357971 PubMedCrossRefGoogle Scholar
  112. 112.
    Stuchly MA, Abrishamkar H, Strydom ML (2006) Numerical evaluation of radio frequency power deposition in human models during MRI. In: Annual international conference of the IEEE engineering in medicine and biology society, vol 1, pp 272–275. doi: 10.1109/IEMBS.2006.259880
  113. 113.
    van Lier AL, Kotte AN, Raaymakers BW, Lagendijk JJ, van den Berg CA (2012) Radiofrequency heating induced by 7T head MRI: thermal assessment using discrete vasculature or Pennes’ bioheat equation. J Magn Reson Imaging JMRI 35(4):795–803. doi: 10.1002/jmri.22878 PubMedCrossRefGoogle Scholar
  114. 114.
    van Rhoon GC, Samaras T, Yarmolenko PS, et al. (2013) CEM43 degrees C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23(8):2215–2227. doi: 10.1007/s00330-013-2825-y PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Voigt T, Homann H, Katscher U, Doessel O (2012) Patient-individual local SAR determination: in vivo measurements and numerical validation. Magn Reson Med 68(4):1117–1126. doi: 10.1002/mrm.23322 PubMedCrossRefGoogle Scholar
  116. 116.
    Wang Z, Lin JC, Vaughan JT, Collins CM (2008) Consideration of physiological response in numerical models of temperature during MRI of the human head. J Magn Reson Imaging JMRI 28(5):1303–1308. doi: 10.1002/jmri.21556 PubMedCrossRefGoogle Scholar
  117. 117.
    Wolf S, Diehl D, Gebhardt M, Mallow J, Speck O (2013) SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed? Magn Reson Med 69(4):1157–1168. doi: 10.1002/mrm.24329 PubMedCrossRefGoogle Scholar
  118. 118.
    Budinger TF, Fischer H, Hentschel D, Reinfelder HE, Schmitt F (1991) Physiological effects of fast oscillating magnetic field gradients. J Comput Assist Tomogr 15(6):909–914PubMedCrossRefGoogle Scholar
  119. 119.
    Andreuccetti D, Contessa GM, Falsaperla R, et al. (2013) Weighted-peak assessment of occupational exposure due to MRI gradient fields and movements in a nonhomogeneous static magnetic field. Med Phys 40(1):011910. doi: 10.1118/1.4771933 PubMedCrossRefGoogle Scholar
  120. 120.
    Bencsik M, Bowtell R, Bowley R (2007) Electric fields induced in the human body by time-varying magnetic field gradients in MRI: numerical calculations and correlation analysis. Phys Med Biol 52(9):2337–2353. doi: 10.1088/0031-9155/52/9/001 PubMedCrossRefGoogle Scholar
  121. 121.
    Bourland JD, Nyenhuis JA, Schaefer DJ (1999) Physiologic effects of intense MR imaging gradient fields. Neuroimaging Clin N Am 9(2):363–377PubMedGoogle Scholar
  122. 122.
    Cohen MS, Weisskoff RM, Rzedzian RR, Kantor HL (1990) Sensory stimulation by time-varying magnetic fields. Magn Reson Med 14(2):409–414PubMedCrossRefGoogle Scholar
  123. 123.
    de Vocht F, Liket L, De Vocht A, et al. (2007) Exposure to alternating electromagnetic fields and effects on the visual and visuomotor systems. Br J Radiol 80(958):822–828. doi: 10.1259/bjr/22263979 PubMedCrossRefGoogle Scholar
  124. 124.
    Doherty JU, Whitman GJ, Robinson MD, et al. (1985) Changes in cardiac excitability and vulnerability in NMR fields. Invest Radiol 20(2):129–135PubMedCrossRefGoogle Scholar
  125. 125.
    Ehrhardt JC, Lin CS, Magnotta VA, Fisher DJ, Yuh WT (1997) Peripheral nerve stimulation in a whole-body echo-planar imaging system. J Magn Reson Imaging JMRI 7(2):405–409PubMedCrossRefGoogle Scholar
  126. 126.
    Feldman RE, Hardy CJ, Aksel B, Schenck J, Chronik BA (2009) Experimental determination of human peripheral nerve stimulation thresholds in a 3-axis planar gradient system. Magn Reson Med 62(3):763–770. doi: 10.1002/mrm.22050 PubMedCrossRefGoogle Scholar
  127. 127.
    Glover PM, Eldeghaidy S, Mistry TR, Gowland PA (2007) Measurement of visual evoked potential during and after periods of pulsed magnetic field exposure. J Magn Reson Imaging JMRI 26(5):1353–1356. doi: 10.1002/jmri.21155 PubMedCrossRefGoogle Scholar
  128. 128.
    Ham CL, Engels JM, van de Wiel GT, Machielsen A (1997) Peripheral nerve stimulation during MRI: effects of high gradient amplitudes and switching rates. J Magn Reson Imaging JMRI 7(5):933–937PubMedCrossRefGoogle Scholar
  129. 129.
    Kangarlu A, Tang L, Ibrahim TS (2007) Electric field measurements and computational modeling at ultrahigh-field MRI. Magn Reson Imaging 25(8):1222–1226. doi: 10.1016/j.mri.2007.01.115 PubMedCrossRefGoogle Scholar
  130. 130.
    King KF, Schaefer DJ (2000) Spiral scan peripheral nerve stimulation. J Magn Reson Imaging JMRI 12(1):164–170PubMedCrossRefGoogle Scholar
  131. 131.
    Li Y, Hand JW, Wills T, Hajnal JV (2007) Numerically-simulated induced electric field and current density within a human model located close to a z-gradient coil. J Magn Reson Imaging JMRI 26(5):1286–1295. doi: 10.1002/jmri.21137 PubMedCrossRefGoogle Scholar
  132. 132.
    Mansfield P, Harvey PR (1993) Limits to neural stimulation in echo-planar imaging. Magn Reson Med 29(6):746–758PubMedCrossRefGoogle Scholar
  133. 133.
    Schaefer DJ, Bourland JD, Nyenhuis JA (2000) Review of patient safety in time-varying gradient fields. J Magn Reson Imaging JMRI 12(1):20–29PubMedCrossRefGoogle Scholar
  134. 134.
    Vogt FM, Ladd ME, Hunold P, et al. (2004) Increased time rate of change of gradient fields: effect on peripheral nerve stimulation at clinical MR imaging. Radiology 233(2):548–554. doi: 10.1148/radiol.2332030428 PubMedCrossRefGoogle Scholar
  135. 135.
    Weinberg IN, Stepanov PY, Fricke ST, et al. (2012) Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds. Med Phys 39(5):2578–2583. doi: 10.1118/1.3702775 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    U.S. Department of Health and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Guidance for Industry and FDA Staff (2003) Criteria for significant risk investigations of magnetic resonance diagnostic devices.Google Scholar
  137. 137.
    U.S. Department of Health and Human Services, FDA, CDRH, Guidance for Industry and FDA Staff (2003) Criteria for significant risk investigations of magnetic resonance diagnostic devices.Google Scholar
  138. 138.
  139. 139.
    Sammet S, Koch RM, Aguila F, Knopp MV (2010) Residual magnetism in an MRI suite after field-rampdown: what are the issues and experiences? J Magn Reson Imaging JMRI 31(5):1272–1276. doi: 10.1002/jmri.22141 PubMedCrossRefGoogle Scholar
  140. 140.
    Collins CM, Wang Z (2011) Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med 65(5):1470–1482. doi: 10.1002/mrm.22845 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Machata AM, Willschke H, Kabon B, Prayer D, Marhofer P (2009) Effect of brain magnetic resonance imaging on body core temperature in sedated infants and children. Br J Anaesth 102(3):385–389. doi: 10.1093/bja/aen388 PubMedCrossRefGoogle Scholar
  142. 142.
    Woods TO (2007) Standards for medical devices in MRI: present and future. J Magn Reson Imaging JMRI 26(5):1186–1189. doi: 10.1002/jmri.21140 PubMedCrossRefGoogle Scholar
  143. 143.
    ASTM F2119-07 (2013) Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants. West Conshohocken: ASTM InternationalGoogle Scholar
  144. 144.
    Kanal E, Shellock FG, Talagala L (1990) Safety considerations in MR imaging. Radiology 176(3):593–606. doi: 10.1148/radiology.176.3.2202008 PubMedCrossRefGoogle Scholar
  145. 145.
    IEC 60 601-2-33 (2015) Medical electrical equipment—Part 2: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosisGoogle Scholar
  146. 146.
    International Electrotechnical Commission (IEC), Medical Electrical Equipment (2002) Particular requirements for the safety of magnetic resonance equipment for medical diagnosis, International Standard IEC 60601-2-33Google Scholar
  147. 147.
    Guidelines to Prevent Excessive Heating and Burns Associated with Magnetic Resonance Procedures developed by the Institute for Magnetic Resonance Safety, Education, and Research (IMRSER). http://www.mrisafety.com/SafetyInfov.asp?SafetyInfoID=166. Accessed 1 Mar 2016
  148. 148.
    Kangarlu A, Ibrahim TS, Shellock FG (2005) Effects of coil dimensions and field polarization on RF heating inside a head phantom. Magn Reson Imaging 23(1):53–60. doi: 10.1016/j.mri.2004.11.007 PubMedCrossRefGoogle Scholar
  149. 149.
    Hassepass F, Stabenau V, Arndt S, et al. (2014) Magnet dislocation: an increasing and serious complication following MRI in patients with cochlear implants. RoFo 186(7):680–685. doi: 10.1055/s-0033-1356238 PubMedCrossRefGoogle Scholar
  150. 150.
    ACR_SPR Practice parameter for the safe and optimal performance of fetal magnetic resonance imaging (MRI) (2015) Revised 2015 (Resolution 11). http://www.acr.org/~/media/CB384A65345F402083639E6756CE513F.pdf. Accessed 1 Mar 2016
  151. 151.
    Baker PN, Johnson IR, Harvey PR, Gowland PA, Mansfield P (1994) A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol 170(1 Pt 1):32–33PubMedCrossRefGoogle Scholar
  152. 152.
    Chew S, Ahmadi A, Goh PS, Foong LC (2001) The effects of 1.5T magnetic resonance imaging on early murine in vitro embryo development. J Magn Reson Imaging JMRI 13(3):417–420PubMedCrossRefGoogle Scholar
  153. 153.
    Clements H, Duncan KR, Fielding K, et al. (2000) Infants exposed to MRI in utero have a normal paediatric assessment at 9 months of age. Br J Radiol 73(866):190–194. doi: 10.1259/bjr.73.866.10884733 PubMedCrossRefGoogle Scholar
  154. 154.
    American College of Radiology (ACR) (2015) Manual on Contrast Media, Version 10.1. http://www.acr.org/quality-safety/resources/~/media/37D84428BF1D4E1B9A3A2918DA9E27A3.pdf. Accessed 1 Mar 2016
  155. 155.
    Gilk T, Kanal E (2013) Interrelating sentinel event alert #38 with the ACR guidance document on MR safe practices: 2013. An MRI accreditation safety review tool. J Magn Reson Imaging JMRI 37(3):531–543. doi: 10.1002/jmri.24027 PubMedCrossRefGoogle Scholar
  156. 156.
    Thomsen HS (2006) Contrast media: safety issues and ESUR guidelines. Medical radiology. Berlin: SpringerCrossRefGoogle Scholar
  157. 157.
    Behra-Miellet J, Gressier B, Brunet C, et al. (1996) Free gadolinium and gadodiamide, a gadolinium chelate used in magnetic resonance imaging: evaluation of their in vitro effects on human neutrophil viability. Methods Find Exp Clin Pharmacol 18(7):437–442PubMedGoogle Scholar
  158. 158.
    Mendoza FA, Artlett CM, Sandorfi N, et al. (2006) Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum 35(4):238–249. doi: 10.1016/j.semarthrit.2005.08.002 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    The International Center for Nephrogenic Systemic Fibrosis Research (ICNSFR) by Cowper SE. http://www.icnfdr.org. Accessed 1 Mar 2016
  160. 160.
    Food and Drug Administration (FDA) Information on Gadolinium-Based Contrast Agents (2015) http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm142882.htm. Accessed 1 Mar 2016
  161. 161.
    Brown JJ, Hynes MR, Wible JH Jr (2007) Measurement of serum calcium concentration after administration of four gadolinium-based contrast agents to human volunteers. AJR Am J Roentgenol 189(6):1539–1544. doi: 10.2214/AJR.07.2464 PubMedCrossRefGoogle Scholar
  162. 162.
    Dillman JR, Ellis JH, Cohan RH, et al. (2011) Safety of gadolinium-based contrast material in sickle cell disease. J Magn Reson Imaging JMRI 34(4):917–920. doi: 10.1002/jmri.22666 PubMedCrossRefGoogle Scholar
  163. 163.
    Evenepoel P, Zeegers M, Segaert S, et al. (2004) Nephrogenic fibrosing dermopathy: a novel, disabling disorder in patients with renal failure. Nephrol Dial Transplant 19(2):469–473PubMedCrossRefGoogle Scholar
  164. 164.
    Grobner T (2006) Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21(4):1104–1108. doi: 10.1093/ndt/gfk062 PubMedCrossRefGoogle Scholar
  165. 165.
    Kanal E (1992) An overview of electromagnetic safety considerations associated with magnetic resonance imaging. Ann N Y Acad Sci 649:204–224PubMedCrossRefGoogle Scholar
  166. 166.
    Marckmann P, Skov L, Rossen K, et al. (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol JASN 17(9):2359–2362. doi: 10.1681/ASN.2006060601 PubMedCrossRefGoogle Scholar
  167. 167.
    Marckmann P, Skov L, Rossen K, Heaf JG, Thomsen HS (2007) Case-control study of gadodiamide-related nephrogenic systemic fibrosis. Nephrol Dial Transpl 22(11):3174–3178. doi: 10.1093/ndt/gfm261 CrossRefGoogle Scholar
  168. 168.
    Umans H, Haramati N, Flusser G (2000) The diagnostic role of gadolinium enhanced MRI in distinguishing between acute medullary bone infarct and osteomyelitis. Magn Reson Imaging 18(3):255–262PubMedCrossRefGoogle Scholar
  169. 169.
    Westwood MA, Shah F, Anderson LJ, et al. (2007) Myocardial tissue characterization and the role of chronic anemia in sickle cell cardiomyopathy. J Magn Reson Imaging JMRI 26(3):564–568. doi: 10.1002/jmri.21018 PubMedCrossRefGoogle Scholar
  170. 170.
    Zimmerman RA (2005) MRI/MRA evaluation of sickle cell disease of the brain. Pediatr Radiol 35(3):249–257. doi: 10.1007/s00247-005-1420-z PubMedCrossRefGoogle Scholar
  171. 171.
    Thorpe S, Salkovskis PM, Dittner A (2008) Claustrophobia in MRI: the role of cognitions. Magn Reson Imaging 26(8):1081–1088. doi: 10.1016/j.mri.2008.01.022 PubMedCrossRefGoogle Scholar
  172. 172.
    Conquering claustrophobia during your MRI (2002) Johns Hopkins Med Lett Health After 50 14(9):3Google Scholar
  173. 173.
    Dantendorfer K, Wimberger D, Katschnig H, Imhoff H (1991) Claustrophobia in MRI scanners. Lancet 338(8769):761–762PubMedCrossRefGoogle Scholar
  174. 174.
    Murphy KJ, Brunberg JA (1997) Adult claustrophobia, anxiety and sedation in MRI. Magn Reson Imaging 15(1):51–54PubMedCrossRefGoogle Scholar
  175. 175.
    Phelps LA (1990) MRI and claustrophobia. Am Fam Physician 42(4):930PubMedGoogle Scholar
  176. 176.
    Wahba H (1995) Minimizing claustrophobia in an MRI scanner. Nursing 25(7):32C–32DPubMedGoogle Scholar
  177. 177.
    Serafini G, Ongaro L, Mori A, et al. (2005) Anesthesia for MRI in the paediatric patient. Minerva Anestesiol 71(6):361–366PubMedGoogle Scholar
  178. 178.
    Pilling D, Abernethy L, Wright N, Carty H (2001) Sedation, safety and MRI. Br J Radiol 74(885):875–876. doi: 10.1259/bjr.74.885.740875b PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of Chicago MedicineChicagoUSA

Personalised recommendations