Abdominal Imaging

, Volume 40, Issue 4, pp 789–794 | Cite as

Cross-vendor validation of liver magnetic resonance elastography

  • Suraj D. Serai
  • Meng Yin
  • Hui Wang
  • Richard L. Ehman
  • Daniel J. Podberesky
Article

Abstract

Purpose

To evaluate and validate the reproducibility of MR Elastography (MRE)-derived liver stiffness values on two different MR vendor platforms performed on the same subject on the same day.

Methods

This investigation was approved by the hospital IRB. MRE exams were performed twice in identical fashion in eight volunteers and in five clinical patients on two different 1.5 T MR scanners—once on a Philips MR scanner and immediately afterward in back-to-back fashion on a General Electric MR scanner, or vice versa. All scan parameters were kept identical on the two platforms to the best extent possible. After the MRE magnitude and phase images were obtained, the data were converted into quantitative images displaying the stiffness of the liver parenchyma. Mean liver stiffness values between the two platforms were compared using interclass correlation with a p value <0.05 considered statistically significant.

Results

Interclass correlation coefficient (ICC) value of 0.994 was obtained for 13 subjects with p value <0.001 indicating a significantly positive correlation.

Conclusion

As MRE gains in acceptance and as its availability becomes more widespread, it is important to ascertain and confirm that liver stiffness values obtained on different MRE vendor platforms are consistent and reproducible. In this small pilot investigation, we demonstrate that liver stiffness measurement with MRE is reproducible and has very good consistency across two vendor platforms.

Keywords

MRE Liver elastography MRE validation 

Notes

Acknowledgements

Partial support from NIH grant EB001981 to RLE.

Conflict of interest

RLE and the Mayo Clinic hold patents and have a financial interest through royalties related to MRE technology. HW is an employee of Philips Healthcare. DJP received travel reimbursement from Philips Healthcare.

References

  1. 1.
    Beath SV (1994) Liver disorders in childhood. Arch Dis Child 71(4):390CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Friedman SL (2003) Liver fibrosis—from bench to bedside. J Hepatol 38(Suppl 1):S38–S53CrossRefPubMedGoogle Scholar
  3. 3.
    Friedman SL (2010) Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 7(8):425–436. doi:10.1038/nrgastro.2010.97 CrossRefPubMedGoogle Scholar
  4. 4.
    Mieli-Vergani G, Vergani D (2008) Autoimmune paediatric liver disease. World J Gastroenterol 14(21):3360–3367CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Brunt EM (2010) Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 7(4):195–203. doi:10.1038/nrgastro.2010.21 CrossRefPubMedGoogle Scholar
  6. 6.
    Bortolotti F, Guido M (2007) Reversal of liver cirrhosis: a desirable clinical outcome and its pathogenic background. J pediatr Gastroenterol Nutr 44(4):401–406. doi:10.1097/MPG.0b013e318032069a CrossRefPubMedGoogle Scholar
  7. 7.
    Naini BV, Lassman CR (2012) Total parenteral nutrition therapy and liver injury: a histopathologic study with clinical correlation. Hum Pathol 43(6):826–833. doi:10.1016/j.humpath.2011.07.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Castera L, Pinzani M (2010) Biopsy and non-invasive methods for the diagnosis of liver fibrosis: does it take two to tango? Gut 59(7):861–866. doi:10.1136/gut.2010.214650 CrossRefPubMedGoogle Scholar
  9. 9.
    Pariente D, Franchi-Abella S (2010) Paediatric chronic liver diseases: how to investigate and follow up? Role of imaging in the diagnosis of fibrosis. Pediatr Radiol 40(6):906–919. doi:10.1007/s00247-010-1600-3 CrossRefPubMedGoogle Scholar
  10. 10.
    Straub BK, Schirmacher P (2010) Pathology and biopsy assessment of non-alcoholic fatty liver disease. Dig Dis 28(1):197–202. doi:10.1159/000282086 CrossRefPubMedGoogle Scholar
  11. 11.
    Regev A, Berho M, Jeffers LJ, et al. (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol 97(10):2614–2618. doi:10.1111/j.1572-0241.2002.06038.x CrossRefPubMedGoogle Scholar
  12. 12.
    Xanthakos SA, Podberesky DJ, Serai SD, et al. (2014) Use of magnetic resonance elastography to assess hepatic fibrosis in children with chronic liver disease. J Pediatr 164(1):186–188. doi:10.1016/j.jpeds.2013.07.050 CrossRefPubMedGoogle Scholar
  13. 13.
    Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, Fidler JL, Ehman RL (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5 (10):1207–1213.e1202. doi:10.1016/j.cgh.2007.06.012
  14. 14.
    Serai SD, Towbin AJ, Podberesky DJ (2012) Pediatric liver MR elastography. Dig Dis Sci 57(10):2713–2719. doi:10.1007/s10620-012-2196-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Serai SD, Wallihan DB, Venkatesh SK, et al. (2014) Magnetic resonance elastography of the liver in patients status-post fontan procedure: feasibility and preliminary results. Congenit Heart Dis 9(1):7–14. doi:10.1111/chd.12144 CrossRefPubMedGoogle Scholar
  16. 16.
    Towbin AJ, Serai SD, Podberesky DJ (2013) Magnetic resonance imaging of the pediatric liver: imaging of steatosis, iron deposition, and fibrosis. Magn Reson Imaging Clin North Am 21(4):669–680. doi:10.1016/j.mric.2013.05.001 CrossRefGoogle Scholar
  17. 17.
    Wallihan DB, Podberesky DJ, Marino BS, Sticka JS, Serai S (2013) Relationship of MR elastography determined liver stiffness with cardiac function after Fontan palliation. J Magn Reson Imaging . doi:10.1002/jmri.24496 PubMedGoogle Scholar
  18. 18.
    Manduca A, Oliphant TE, Dresner MA, et al. (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5(4):237–254CrossRefPubMedGoogle Scholar
  19. 19.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310CrossRefPubMedGoogle Scholar
  20. 20.
    Bland JM, Altman DG (2012) Agreed statistics: measurement method comparison. Anesthesiology 116(1):182–185. doi:10.1097/ALN.0b013e31823d7784 CrossRefPubMedGoogle Scholar
  21. 21.
    Lee Y, Lee JM, Lee JE, et al. (2014) MR elastography for noninvasive assessment of hepatic fibrosis: reproducibility of the examination and reproducibility and repeatability of the liver stiffness value measurement. J Magn Reson Imaging 39(2):326–331. doi:10.1002/jmri.24147 CrossRefPubMedGoogle Scholar
  22. 22.
    Shi Y, Glaser KJ, Venkatesh SK, Ben-Abraham EI, Ehman RL (2014) Feasibility of using 3D MR elastography to determine pancreatic stiffness in healthy volunteers. J Magn Reson Imaging . doi:10.1002/jmri.24572 Google Scholar
  23. 23.
    Bota S, Sporea I, Sirli R, et al. (2012) Intra- and interoperator reproducibility of acoustic radiation force impulse (ARFI) elastography–preliminary results. Ultrasound Med Biol 38(7):1103–1108. doi:10.1016/j.ultrasmedbio.2012.02.032 CrossRefPubMedGoogle Scholar
  24. 24.
    Ebinuma H, Saito H, Komuta M, et al. (2011) Evaluation of liver fibrosis by transient elastography using acoustic radiation force impulse: comparison with Fibroscan((R)). J Gastroenterol 46(10):1238–1248. doi:10.1007/s00535-011-0437-3 CrossRefPubMedGoogle Scholar
  25. 25.
    Rizzo L, Calvaruso V, Cacopardo B, et al. (2011) Comparison of transient elastography and acoustic radiation force impulse for non-invasive staging of liver fibrosis in patients with chronic hepatitis C. Am J Gastroenterol 106(12):2112–2120. doi:10.1038/ajg.2011.341 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Suraj D. Serai
    • 1
  • Meng Yin
    • 2
  • Hui Wang
    • 3
  • Richard L. Ehman
    • 2
  • Daniel J. Podberesky
    • 1
    • 4
  1. 1.Department of RadiologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Department of RadiologyMayo ClinicRochesterUSA
  3. 3.Philips HealthcareClevelandUSA
  4. 4.Department of RadiologyNemours Children’s HospitalOrlandoUSA

Personalised recommendations