Advertisement

Abdominal Imaging

, Volume 40, Issue 1, pp 102–111 | Cite as

Comparative evaluation of three-dimensional Gd-EOB-DTPA-enhanced MR fusion imaging with CT fusion imaging in the assessment of treatment effect of radiofrequency ablation of hepatocellular carcinoma

  • Yuki Makino
  • Yasuharu Imai
  • Takumi Igura
  • Masatoshi Hori
  • Kazuto Fukuda
  • Yoshiyuki Sawai
  • Sachiyo Kogita
  • Norihiko Fujita
  • Tetsuo Takehara
  • Takamichi Murakami
Article

Abstract

Purpose

To assess the feasibility of fusion of pre- and post-ablation gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) to evaluate the effects of radiofrequency ablation (RFA) of hepatocellular carcinoma (HCC), compared with similarly fused CT images

Patients and methods

This retrospective study included 67 patients with 92 HCCs treated with RFA. Fusion images of pre- and post-RFA dynamic CT, and pre- and post-RFA Gd-EOB-DTPA-MRI were created, using a rigid registration method. The minimal ablative margin measured on fusion imaging was categorized into three groups: (1) tumor protruding outside the ablation zone boundary, (2) ablative margin 0–<5.0 mm beyond the tumor boundary, and (3) ablative margin ≥5.0 mm beyond the tumor boundary. The categorization of minimal ablative margins was compared between CT and MR fusion images.

Results

In 57 (62.0%) HCCs, treatment evaluation was possible both on CT and MR fusion images, and the overall agreement between them for the categorization of minimal ablative margin was good (κ coefficient = 0.676, P < 0.01). MR fusion imaging enabled treatment evaluation in a significantly larger number of HCCs than CT fusion imaging (86/92 [93.5%] vs. 62/92 [67.4%], P < 0.05).

Conclusions

Fusion of pre- and post-ablation Gd-EOB-DTPA-MRI is feasible for treatment evaluation after RFA. It may enable accurate treatment evaluation in cases where CT fusion imaging is not helpful.

Keywords

Hepatocellular carcinoma Radiofrequency ablation Fusion imaging Ablative margin Gd-EOB-DTPA 

References

  1. 1.
    Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30:52–60. doi: 10.1055/s-0030-1247132 PubMedCrossRefGoogle Scholar
  2. 2.
    Bruix J, Sherman M, Llovet JM, et al. (2001) Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 35:421–430PubMedCrossRefGoogle Scholar
  3. 3.
    Fujioka C, Horiguchi J, Ishifuro M, et al. (2006) A feasibility study: evaluation of radiofrequency ablation therapy to hepatocellular carcinoma using image registration of preoperative and postoperative CT. Acad Radiol 13:986–994PubMedCrossRefGoogle Scholar
  4. 4.
    Makino Y, Imai Y, Igura T, et al. (2013) Utility of CT fusion imaging for the evaluation of the ablative margin of radiofrequency ablation for hepatocellular carcinoma and the correlation to local tumor progression. Hepatol Res 43:950–958. doi: 10.1111/hepr.12049 PubMedCrossRefGoogle Scholar
  5. 5.
    Niculescu G, Foran DJ, Nosher J (2007) Non-rigid registration of the liver in consecutive CT studies for assessment of tumor response to radiofrequency ablation. Conf Proc IEEE Eng Med Biol Soc 2007:856–859Google Scholar
  6. 6.
    Giesel FL, Mehndiratta A, Locklin J, et al. (2009) Image fusion using CT, MRI and PET for treatment planning, navigation and follow up in percutaneous RFA. Exp Oncol 31:106–114PubMedCentralPubMedGoogle Scholar
  7. 7.
    Kim YS, Lee WJ, Rhim H, et al. (2010) The minimal ablative margin of radiofrequency ablation of hepatocellular carcinoma (>2 and <5 cm) needed to prevent local tumor progression: 3D quantitative assessment using CT image fusion. AJR Am J Roentgenol 195:758–765. doi: 10.2214/AJR.09.2954 PubMedCrossRefGoogle Scholar
  8. 8.
    Kim KW, Lee JM, Klotz E, et al. (2011) Safety margin assessment after radiofrequency ablation of the liver using registration of preprocedure and postprocedure CT images. AJR Am J Roentgenol 196:W565–W572. doi: 10.2214/AJR.10.5122 PubMedCrossRefGoogle Scholar
  9. 9.
    Tomonari A, Tsuji K, Yamazaki H, et al. (2013) Feasibility of fused imaging for the evaluation of radiofrequency ablative margin for hepatocellular carcinoma. Hepatol Res 43:728–734. doi: 10.1111/hepr.12022 PubMedCrossRefGoogle Scholar
  10. 10.
    Passera K, Selvaggi S, Scaramuzza D, et al. (2013) Radiofrequency ablation of liver tumors: quantitative assessment of tumor coverage through CT image processing. BMC Med Imaging 13:3. doi: 10.1186/1471-2342-13-3 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Murakami T, Imai Y, Okada M, et al. (2011) Ultrasonography, computed tomography and magnetic resonance imaging of hepatocellular carcinoma: toward improved treatment decisions. Oncology 81(Suppl 1):86–99. doi: 10.1159/000333267 PubMedCrossRefGoogle Scholar
  12. 12.
    Kogita S, Imai Y, Okada M, et al. (2010) Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma:correlation with histological grading and portal blood flow. Eur Radiol 20:2405–2413. doi: 10.1007/s00330-010-1812-9 PubMedCrossRefGoogle Scholar
  13. 13.
    Sano K, Ichikawa T, Motosugi U, et al. (2011) Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MRI. Radiology 261:834–844. doi: 10.1148/radiol.11101840 PubMedCrossRefGoogle Scholar
  14. 14.
    Onishi H, Kim T, Imai Y, et al. (2012) Hypervascular hepatocellular carcinomas: detection with gadoxetate disodium-enhanced MRI and multiphasic multidetector CT. Eur Radiol 22:845–854. doi: 10.1007/s00330-011-2316-y PubMedCrossRefGoogle Scholar
  15. 15.
    Okada M, Imai Y, Kim T, et al. (2010) Comparison of enhancement patterns of histologically confirmed hepatocellular carcinoma between gadoxetate- and ferucarbotran-enhanced magnetic resonance imaging. J Magn Reson Imaging 32:903–913. doi: 10.1002/jmri.22333 PubMedCrossRefGoogle Scholar
  16. 16.
    Di Martino M, Marin D, Guerrisi A, et al. (2010) Intraindividual comparison of gadoxetate disodium-enhanced MRI and 64-section multidetector CT in the detection of hepatocellular carcinoma in patients with cirrhosis. Radiology 256:806–816. doi: 10.1148/radiol.10091334 PubMedCrossRefGoogle Scholar
  17. 17.
    Makino Y, Imai Y, Ohama H, et al. (2013) Ultrasonography fusion imaging system increases the chance of radiofrequency ablation for hepatocellular carcinoma with poor conspicuity on conventional ultrasonography. Oncology 84(Suppl 1):44–50. doi: 10.1159/000345889 PubMedCrossRefGoogle Scholar
  18. 18.
    Peng ZW, Zhang YJ, Liang HH, et al. (2012) Recurrent hepatocellular carcinoma treated with sequential transcatheter arterial chemoembolization and RF ablation versus RF ablation alone: a prospective randomized trial. Radiology 262:689–700. doi: 10.1148/radiol.11110637 PubMedCrossRefGoogle Scholar
  19. 19.
    Peng ZW, Zhang YJ, Chen MS, et al. (2013) Radiofrequency ablation with or without transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma: a prospective randomized trial. J Clin Oncol 31:426–432. doi: 10.1200/JCO.2012.42.9936 PubMedCrossRefGoogle Scholar
  20. 20.
    Bruix J, Sherman M, American Association for the Study of Liver Diseases (2011) Management of hepatocellular carcinoma: an update. Hepatology 53:1020–1022. doi: 10.1002/hep.24199 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    de Lope CR, Tremosini S, Forner A, Reig M, Bruix J (2012) Management of HCC. J Hepatol 56(Suppl 1):S75–S87. doi: 10.1016/S0168-8278(12)60009-9.22 PubMedCrossRefGoogle Scholar
  22. 22.
    Nakazawa T, Kokubu S, Shibuya A, et al. (2007) Radiofrequency ablation of hepatocellular carcinoma: correlation between local tumor progression after ablation and ablative margin. AJR Am J Roentgenol 188:480–488PubMedCrossRefGoogle Scholar
  23. 23.
    Wood BJ, Kruecker J, Abi-Jaoudeh N, et al. (2010) Navigation systems for ablation. J Vasc Interv Radiol 21(8 Suppl):257–263. doi: 10.1016/j.jvir.2010.05.003 CrossRefGoogle Scholar
  24. 24.
    Abi-Jaoudeh N, Mielekamp P, Noordhoek N, et al. (2012) Cone-beam computed tomography fusion and navigation for real-time positron emission tomography-guided biopsies and ablations: a feasibility study. J Vasc Interv Radiol 23:737–743. doi: 10.1016/j.jvir.2012.02.006 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Abi-Jaoudeh N, Kobeiter H, Xu S, Wood BJ (2013) Image fusion during vascular and nonvascular image-guided procedures. Tech Vasc Interv Radiol 16:168–176. doi: 10.1053/j.tvir.2013.02.012 PubMedCrossRefGoogle Scholar
  26. 26.
    Carrillo A, Duerk JL, Lewin JS, Wilson DL (2000) Semiautomatic 3-D image registration as applied to interventional MRI liver cancer treatment. IEEE Trans Med Imaging 19:175–185PubMedCrossRefGoogle Scholar
  27. 27.
    Dromain C, de Baere T, Elias D, et al. (2002) Hepatic tumors treated with percutaneous radio-frequency ablation: CT and MRI follow-up. Radiology 223:255–262PubMedCrossRefGoogle Scholar
  28. 28.
    Bangard C, Stippel DL, Berg F, et al. (2008) Conspicuity of zones of ablation after radiofrequency ablation in porcine livers: comparison of an extracellular and an SPIO contrast agent. J Magn Reson Imaging 28:263–270. doi: 10.1002/jmri.21423 PubMedCrossRefGoogle Scholar
  29. 29.
    Yoon JH, Lee EJ, Cha SS, et al. (2010) Comparison of gadoxetic acid-enhanced MRI versus four-phase multi-detector row computed tomography in assessing tumor regression after radiofrequency ablation in subjects with hepatocellular carcinomas. J Vasc Interv Radiol 21:348–356. doi: 10.1016/j.jvir.2009.11.014 PubMedCrossRefGoogle Scholar
  30. 30.
    Crum WR, Hartkens T, Hill DL (2004) Non-rigid image registration: theory and practice. Br J Radiol 77(Spec No 2):S140–53Google Scholar
  31. 31.
    Kim S, Mannelli L, Hajdu CH, et al. (2006) Hepatocellular carcinoma: assessment of response to transarterial chemoembolization with image subtraction. J Magn Reson Imaging 31:348–355. doi: 10.1002/jmri.22038 CrossRefGoogle Scholar
  32. 32.
    Khankan AA, Murakami T, Onishi H, et al. (2008) Hepatocellular carcinoma treated with radio frequency ablation: an early evaluation with magnetic resonance imaging. J Magn Reson Imaging 27:546–551. doi: 10.1002/jmri.21050 PubMedCrossRefGoogle Scholar
  33. 33.
    Koda M, Tokunaga S, Fujise Y, et al. (2012) Assessment of ablative margin after radiofrequency ablation for hepatocellular carcinoma; comparison between magnetic resonance imaging with ferucarbotran and enhanced CT with iodized oil deposition. Eur J Radiol 81:1400–1404. doi: 10.1016/j.ejrad.2011.03.004 PubMedCrossRefGoogle Scholar
  34. 34.
    Koda M, Tokunaga S, Miyoshi K, et al. (2012) Assessment of ablative margin by unenhanced magnetic resonance imaging after radiofrequency ablation for hepatocellular carcinoma. Eur J Radiol 81:2730–2736. doi: 10.1016/j.ejrad.2011.11.01335 PubMedCrossRefGoogle Scholar
  35. 35.
    Mannelli L, Padia SA, Yeung RS, Green DE (2013) Irreversible electroporation of a liver metastasis. Liver Int 33:104. doi: 10.1111/liv.12000 PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang Y, White SB, Nicolai JR, et al. (2014) Multimodality imaging to assess immediate response to irreversible electroporation in a rat liver tumor model. Radiology 271:721–729. doi: 10.1148/radiol.14130989 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yuki Makino
    • 1
  • Yasuharu Imai
    • 1
  • Takumi Igura
    • 1
  • Masatoshi Hori
    • 2
  • Kazuto Fukuda
    • 1
  • Yoshiyuki Sawai
    • 1
  • Sachiyo Kogita
    • 1
  • Norihiko Fujita
    • 3
  • Tetsuo Takehara
    • 4
  • Takamichi Murakami
    • 5
  1. 1.Department of GastroenterologyIkeda Municipal HospitalIkedaJapan
  2. 2.Department of RadiologyOsaka University Graduate School of MedicineSuitaJapan
  3. 3.Department of RadiologyIkeda Municipal HospitalIkedaJapan
  4. 4.Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaJapan
  5. 5.Department of RadiologyKinki University Faculty of MedicineOsaka-sayamaJapan

Personalised recommendations