Abdominal Imaging

, Volume 40, Issue 1, pp 85–94 | Cite as

Pancreatic adenocarcinoma: MRI conspicuity and pathologic correlations

  • Laurence Legrand
  • Véronique Duchatelle
  • Vincent Molinié
  • Isabelle Boulay-Coletta
  • Elodie Sibileau
  • Marc Zins
Original Article



To identify the MRI sequences producing the greatest pancreatic adenocarcinoma conspicuity and to assess correlations linking MRI signal intensity and apparent diffusion coefficient to histopathological findings.


We retrospectively included 22 patients with pancreatic adenocarcinoma who underwent MRI (1.5 or 3 T) before surgical resection. Fat-suppressed (FS) T1- and T2-weighted sequences; 3D FS dynamic T1-weighted gadolinium-enhanced gradient-echo (GRE) imaging at the arterial, portal, and delayed phases; and diffusion-weighted imaging (DWI) with b values of 600–800 s/mm2 were reviewed. On each sequence, we assessed tumor conspicuity both qualitatively (3-point scale) and quantitatively (tumor-to-proximal and -distal pancreas contrast ratios), and we performed paired Wilcoxon tests to compare these data across sequences. We evaluated correlations between histopathological characteristics and MRI features.


21/22 (95%) tumors were hypointense by 3D FS T1 GRE arterial phase imaging, which produced the greatest tumor conspicuity (p ≤ 0.02). By DWI, 5/20 (25%) of tumors were isointense. The correlation between size by histology and MRI was strongest with DWI. A progressive enhancement pattern was associated with extensive and dense fibrous stroma (p ≤ 0.03).


3D FS T1 GRE arterial phase imaging produces greater pancreatic adenocarcinoma conspicuity compared to DWI but underestimates tumor size. DWI provides the best size evaluation but fails to delineate the tumor in one-fourth of cases.


Pancreas Adenocarcinoma Magnetic resonance imaging Diffusion-weighted imaging Pathology 



Apparent diffusion coefficient


Diffusion-weighted imaging


Fast-recovery fast spin echo




Gradient echo


Region of interest


Signal intensity


  1. 1.
    Kim JH, Park SH, Yu ES, et al. (2010) Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology 257:87–96PubMedCrossRefGoogle Scholar
  2. 2.
    Yoon SH, Lee JM, Cho JY, et al. (2011) Small (≤20 mm) pancreatic adenocarcinomas: analysis of enhancement patterns and secondary signs with multiphasic multidetector CT. Radiology 259:442–452PubMedCrossRefGoogle Scholar
  3. 3.
    Ichikawa T, Erturk SM, Motosugi U, et al. (2007) High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR 188:409–414PubMedCrossRefGoogle Scholar
  4. 4.
    Kartalis N, Lindholm TL, Aspelin P, Permert J, Albiin N (2009) Diffusion-weighted magnetic resonance imaging of pancreas tumours. Eur Radiol 19:1981–1990PubMedCrossRefGoogle Scholar
  5. 5.
    Fukukura Y, Takumi K, Kamimura K, et al. (2012) Pancreatic adenocarcinoma: variability of diffusion-weighted MR imaging findings. Radiology 2012:732–740CrossRefGoogle Scholar
  6. 6.
    Gabata T, Matsui O, Kadoya M, et al. (1994) Small pancreatic adenocarcinomas: efficacy of MR imaging with fat suppression and gadolinium enhancement. Radiology 193:683–688PubMedCrossRefGoogle Scholar
  7. 7.
    Obuz F, Dicle O, Coker A, Sagol O, Karademir S (2001) Pancreatic adenocarcinoma: detection and staging with dynamic MR imaging. Eur J Radiol 38:146–150PubMedCrossRefGoogle Scholar
  8. 8.
    Chandarana H, Babb J, Macari M (2007) Signal characteristic and enhancement patterns of pancreatic adenocarcinoma: evaluation with dynamic gadolinium enhanced MRI. Clin Radiol 62:876–883PubMedCrossRefGoogle Scholar
  9. 9.
    Muraoka N, Uematsu H, Kimura H, et al. (2008) Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations. JMRI 27:1302–1308PubMedCrossRefGoogle Scholar
  10. 10.
    Wang Y, Chen ZE, Nikolaidis P, et al. (2011) Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade. JMRI 33:136–142PubMedCrossRefGoogle Scholar
  11. 11.
    Elias J Jr, Semelka RC, Altun E, et al. (2007) Pancreatic cancer: correlation of MR findings, clinical features, and tumor grade. JMRI 26:1556–1563PubMedCrossRefGoogle Scholar
  12. 12.
    Rosenkrantz AB, Matza BW, Sabach A, Hajdu CH, Hindman N (2013) Pancreatic cancer: lack of association between apparent diffusion coefficient values and adverse pathological features. Clin Radiol 68:e191–e197PubMedCrossRefGoogle Scholar
  13. 13.
    Park HS, Lee JM, Choi HK, et al. (2009) Preoperative evaluation of pancreatic cancer: comparison of gadolinium-enhanced dynamic MRI with MR cholangiopancreatography versus MDCT. JMRI 30:586–595PubMedCrossRefGoogle Scholar
  14. 14.
    Motosugi U, Ichikawa T, Morisaka H, et al. (2011) Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT. Radiology 260:446–453PubMedCrossRefGoogle Scholar
  15. 15.
    Tajima Y, Kuroki T, Tsutsumi R, et al. (2007) Pancreatic carcinoma coexisting with chronic pancreatitis versus tumor-forming pancreatitis: diagnostic utility of the time-signal intensity curve from dynamic contrast-enhanced MR imaging. World J Gastroenterol 13:858–865PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Rosenkrantz AB, Patel JM, Babb JS, Storey P, Hecht EM (2010) Liver MRI at 3 T using a respiratory-triggered time-efficient 3D T2-weighted technique: impact on artifacts and image quality. AJR 194:634–641PubMedCrossRefGoogle Scholar
  17. 17.
    Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. JMRI 26:375–385PubMedCrossRefGoogle Scholar
  18. 18.
    Heverhagen JT (2007) Noise measurement and estimation in MR imaging experiments. Radiology 245:638–639PubMedCrossRefGoogle Scholar
  19. 19.
    Sobin L, Gospodarowicz M, Wittekind C (2009) TNM classification of malignant tumours, 7th edn. New York: SpringerGoogle Scholar
  20. 20.
    Semelka RC, Kroeker MA, Shoenut JP, et al. (1991) Pancreatic disease: prospective comparison of CT, ERCP, and 1.5-T MR imaging with dynamic gadolinium enhancement and fat suppression. Radiology 181:785–791PubMedCrossRefGoogle Scholar
  21. 21.
    Engelhard K, Hollenbach HP (1997) High-resolution MRI of pancreatic masses with a new circularly polarized body phased-array coil. Eur Radiol 7:643–648PubMedCrossRefGoogle Scholar
  22. 22.
    Kelekis NL, Semelka RC (1997) MRI of pancreatic tumors. Eur Radiol 7:875–886PubMedCrossRefGoogle Scholar
  23. 23.
    Vachiranubhap B, Kim YH, Balci NC, Semelka RC (2009) Magnetic resonance imaging of adenocarcinoma of the pancreas. Top Magn Reson Imaging 20:3–9PubMedCrossRefGoogle Scholar
  24. 24.
    Kartalis N, Loizou L, Edsborg N, Segersvard R, Albiin N (2012) Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques. Eur Radiol 2012:2186–2192CrossRefGoogle Scholar
  25. 25.
    Matsuki M, Inada Y, Nakai G, et al. (2007) Diffusion-weighed MR imaging of pancreatic carcinoma. Abdom Imaging 32:481–483PubMedCrossRefGoogle Scholar
  26. 26.
    Fattahi R, Balci NC, Perman WH, et al. (2009) Pancreatic diffusion-weighted imaging (DWI): comparison between mass-forming focal pancreatitis (FP), pancreatic cancer (PC), and normal pancreas. JMRI 29:350–356PubMedCrossRefGoogle Scholar
  27. 27.
    Lee SS, Byun JH, Park BJ, et al. (2008) Quantitative analysis of diffusion-weighted magnetic resonance imaging of the pancreas: usefulness in characterizing solid pancreatic masses. JMRI 28:928–936PubMedCrossRefGoogle Scholar
  28. 28.
    Wang Y, Miller FH, Chen ZE, et al. (2011) Diffusion-weighted MR imaging of solid and cystic lesions of the pancreas. Radiographics 31:E47–E64PubMedCrossRefGoogle Scholar
  29. 29.
    Re TJ, Lemke A, Klauss M, et al. (2011) Enhancing pancreatic adenocarcinoma delineation in diffusion derived intravoxel incoherent motion f-maps through automatic vessel and duct segmentation. Magn Reson Med 66:1327–1332PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshikawa T, Kawamitsu H, Mitchell DG, et al. (2006) ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR 187:1521–1530PubMedCrossRefGoogle Scholar
  31. 31.
    Mergo PJ, Helmberger TK, Buetow PC, Helmberger RC, Ros PR (1997) Pancreatic neoplasms: MR imaging and pathologic correlation. Radiographics 17:281–301PubMedCrossRefGoogle Scholar
  32. 32.
    Johnson PT, Outwater EK (1999) Pancreatic carcinoma versus chronic pancreatitis: dynamic MR imaging. Radiology 212:213–218PubMedCrossRefGoogle Scholar
  33. 33.
    Yu MH, Lee JY, Kim MA, et al. (2010) MR imaging features of small solid pseudopapillary tumors: retrospective differentiation from other small solid pancreatic tumors. AJR 195:1324–1332PubMedCrossRefGoogle Scholar
  34. 34.
    Hur BY, Lee JM, Lee JE, et al. (2012) Magnetic resonance imaging findings of the mass-forming type of autoimmune pancreatitis: comparison with pancreatic adenocarcinoma. JMRI 36:188–197PubMedCrossRefGoogle Scholar
  35. 35.
    Hall WA, Mikell JL, Mittal P, et al. (2013) Tumor size on abdominal MRI versus pathologic specimen in resected pancreatic adenocarcinoma: implications for radiation treatment planning. Int J Radiat Oncol Biol Phys 86:102–107PubMedCrossRefGoogle Scholar
  36. 36.
    Bali MA, Metens T, Denolin V, et al. (2011) Tumoral and nontumoral pancreas: correlation between quantitative dynamic contrast-enhanced MR imaging and histopathologic parameters. Radiology 261:456–466PubMedCrossRefGoogle Scholar
  37. 37.
    Luttges J, Schemm S, Vogel I, et al. (2000) The grade of pancreatic ductal carcinoma is an independent prognostic factor and is superior to the immunohistochemical assessment of proliferation. J Pathol 191:154–161PubMedCrossRefGoogle Scholar
  38. 38.
    Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B (2011) Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. JMRI 33:128–135PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laurence Legrand
    • 1
  • Véronique Duchatelle
    • 2
  • Vincent Molinié
    • 2
  • Isabelle Boulay-Coletta
    • 1
  • Elodie Sibileau
    • 1
  • Marc Zins
    • 1
  1. 1.Radiology DepartmentFondation Hôpital Saint-JosephParisFrance
  2. 2.Pathology DepartmentFondation Hôpital Saint-JosephParisFrance

Personalised recommendations