Advertisement

Abdominal Imaging

, Volume 39, Issue 6, pp 1261–1266 | Cite as

Relationships between KRAS mutation status and baseline radiographic distribution of disease in patients with stage IV colorectal cancer

  • Michael H. RosenthalEmail author
  • Kyung Won Kim
  • Charles S. Fuchs
  • Jeffrey A. Meyerhardt
  • Nikhil H. Ramaiya
Article
  • 218 Downloads

Abstract

Purpose

KRAS oncogene testing is recommended in all patients with metastatic colorectal cancer due to its impact on treatment selection, but we do not know if KRAS genotype affects extent or pattern of metastases. We investigated whether the initial radiographic distribution of disease varies by KRAS genotype in stage IV colorectal cancer.

Materials and methods

This retrospective study of 65 patients with stage IV colorectal cancer was derived from an institutional clinical trials database. Inclusion criteria required KRAS testing and pretreatment CT studies to be available. Disease burden was characterized by two radiologists.

Results

Univariate analysis showed that there was no significant difference in the initial distribution of disease between KRAS mutant and wild type tumors (P > 0.05). Exploratory analyses showed that patients with poorly differentiated histology had a statistically significant increase in hepatic metastases in the presence of KRAS mutations vs. KRAS wild type genotype (median 5.0 vs. 0.5, P = 0.02).

Conclusions

No overall difference was found in the initial radiographic distribution of disease between KRAS mutant and wild type colorectal cancers. Patients with both poorly differentiated histology and KRAS mutations had more liver metastases in subgroup analyses.

Keywords

Colorectal cancer Diagnostic imaging KRAS oncogenes 

Notes

Acknowledgments

This work was supported in part by National Institutes of Health Grants 5P50CA127003, R01CA149222, R01CA118553, and National Cancer Institute Cancer Center Support Grant 5P30CA06516. We thank Dana-Farber/Harvard Cancer Center in Boston, MA, for the use of the Pathology Specimen Locator Core, which provided data on KRAS mutation testing.

References

  1. 1.
    American Cancer Society (2012) Cancer facts & figures 2012. Atlanta: American Cancer SocietyGoogle Scholar
  2. 2.
    Stangl R, Altendorf-Hofmann A, Charnley RM, Scheele J (1994) Factors influencing the natural history of colorectal liver metastases. Lancet 343(8910):1405–1410PubMedCrossRefGoogle Scholar
  3. 3.
    Chen J, Ye Y, Sun H, Shi G (2013) Association between KRAS codon 13 mutations and clinical response to anti-EGFR treatment in patients with metastatic colorectal cancer: results from a meta-analysis. Cancer Chemother Pharmacol 71(1):265–272. doi: 10.1007/s00280-012-2005-9 PubMedCrossRefGoogle Scholar
  4. 4.
    De Roock W, Claes B, Bernasconi D, et al. (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762. doi: 10.1016/S1470-2045(10)70130-3 PubMedCrossRefGoogle Scholar
  5. 5.
    Jonker DJ, O’Callaghan CJ, Karapetis CS, et al. (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357(20):2040–2048. doi: 10.1056/NEJMoa071834 PubMedCrossRefGoogle Scholar
  6. 6.
    Karapetis CS, Khambata-Ford S, Jonker DJ, et al. (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765. doi: 10.1056/NEJMoa0804385 PubMedCrossRefGoogle Scholar
  7. 7.
    Finkelstein SD, Sayegh R, Bakker A, Swalsky P (1993) Determination of tumor aggressiveness in colorectal cancer by K-ras-2 analysis. Arch Surg 128(5):526–531 (discussion 531–522)PubMedCrossRefGoogle Scholar
  8. 8.
    Gevaert O, Xu J, Hoang CD, et al. (2012) Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data—methods and preliminary results. Radiology 264(2):387–396. doi: 10.1148/radiol.12111607 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Van Cutsem E, Kohne CH, Lang I, et al. (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29(15):2011–2019. doi: 10.1200/JCO.2010.33.5091 PubMedCrossRefGoogle Scholar
  10. 10.
    Mitchell EP, Piperdi B, Lacouture ME, et al. (2011) The efficacy and safety of panitumumab administered concomitantly with FOLFIRI or Irinotecan in second-line therapy for metastatic colorectal cancer: the secondary analysis from STEPP (Skin Toxicity Evaluation Protocol with Panitumumab) by KRAS status. Clin Colorectal Cancer 10(4):333–339. doi: 10.1016/j.clcc.2011.06.004 PubMedCrossRefGoogle Scholar
  11. 11.
    Rosty C, Young JP, Walsh MD, et al. (2013) Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod Pathol 26(6):825–834. doi: 10.1038/modpathol.2012.240 PubMedCrossRefGoogle Scholar
  12. 12.
    Imamura Y, Morikawa T, Liao X, et al. (2012) Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin Cancer Res 18(17):4753–4763. doi: 10.1158/1078-0432.CCR-11-3210 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Benson AB III, for NCCN Guidelines Panel for Colon Cancer (2014) NCCN clinical practice guidelines in oncology: colon cancer. Fort Washington: National Comprehensive Cancer Network Inc.Google Scholar
  14. 14.
    Vogelstein B, Fearon ER, Hamilton SR, et al. (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532. doi: 10.1056/NEJM198809013190901 PubMedCrossRefGoogle Scholar
  15. 15.
    Jass JR (2007) Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50(1):113–130. doi: 10.1111/j.1365-2559.2006.02549.x PubMedCrossRefGoogle Scholar
  16. 16.
    Mannan A, Hahn-Stromberg V (2012) K-ras mutations are correlated to lymph node metastasis and tumor stage, but not to the growth pattern of colon carcinoma. APMIS 120(6):459–468. doi: 10.1111/j.1600-0463.2011.02852.x PubMedCrossRefGoogle Scholar
  17. 17.
    Kraus MC, Seelig MH, Linnemann U, Berger MR (2006) The balanced induction of K-ras codon 12 and 13 mutations in mucosa differs from their ratio in neoplastic tissues. Int J Oncol 29(4):957–964PubMedGoogle Scholar
  18. 18.
    Schimanski CC, Linnemann U, Berger MR (1999) Sensitive detection of K-ras mutations augments diagnosis of colorectal cancer metastases in the liver. Cancer Res 59(20):5169–5175PubMedGoogle Scholar
  19. 19.
    Tsunoda A, Iijima T, Tsunoda Y, et al. (2004) Association of K-ras mutations with liver metastases from colorectal carcinoma. Anticancer Res 24(4):2471–2476PubMedGoogle Scholar
  20. 20.
    Richman SD, Seymour MT, Chambers P, et al. (2009) KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J Clin Oncol 27(35):5931–5937. doi: 10.1200/JCO.2009.22.4295 PubMedCrossRefGoogle Scholar
  21. 21.
    Roth AD, Tejpar S, Delorenzi M, et al. (2010) Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 28(3):466–474. doi: 10.1200/JCO.2009.23.3452 PubMedCrossRefGoogle Scholar
  22. 22.
    Douillard JY, Oliner KS, Siena S, et al. (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369(11):1023–1034. doi: 10.1056/NEJMoa1305275 PubMedCrossRefGoogle Scholar
  23. 23.
    Edge SB, American Joint Committee on Cancer (2010) AJCC cancer staging manual, 7th edn. New York: SpringerGoogle Scholar
  24. 24.
    Eisenhauer EA, Therasse P, Bogaerts J, et al. (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. doi: 10.1016/j.ejca.2008.10.026 PubMedCrossRefGoogle Scholar
  25. 25.
    Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2(9):683–693. doi: 10.1038/nrc882 PubMedCrossRefGoogle Scholar
  26. 26.
    Weiss L, Grundmann E, Torhorst J, et al. (1986) Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J Pathol 150(3):195–203. doi: 10.1002/path.1711500308 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michael H. Rosenthal
    • 1
    • 2
    • 5
    Email author
  • Kyung Won Kim
    • 1
    • 2
    • 3
    • 5
  • Charles S. Fuchs
    • 4
    • 5
  • Jeffrey A. Meyerhardt
    • 4
    • 5
  • Nikhil H. Ramaiya
    • 1
    • 2
    • 5
  1. 1.Department of ImagingDana-Farber Cancer InstituteBostonUSA
  2. 2.Department of RadiologyBrigham Women’s HospitalBostonUSA
  3. 3.Department of Radiology, Asan Medical CenterUniversity of Ulsan College of MedicineUlsanSouth Korea
  4. 4.Department of Medical OncologyDana-Farber Cancer InstituteBostonUSA
  5. 5.Harvard Medical SchoolBostonUSA

Personalised recommendations