Abdominal Imaging

, Volume 37, Issue 4, pp 616–627 | Cite as

Peritoneal carcinomatosis: imaging with 64-MDCT and 3T MRI with diffusion-weighted imaging

  • F. Iafrate
  • M. Ciolina
  • P. Sammartino
  • P. Baldassari
  • M. Rengo
  • P. Lucchesi
  • S. Sibio
  • F. Accarpio
  • A. Di Giorgio
  • A. Laghi
Article

Abstract

Peritoneal carcinomatosis is usually associated with a poor overall survival rate. Recently, introduction of more aggressive surgical treatment and intraperitoneal chemotherapy appears to significantly increase the overall survival rate for these patients. A detailed preoperative assessment of peritoneal carcinomatosis could be very challenging in the field of imaging, but a new aggressive surgical approach requires an accurate preoperative assessment of the disease. Cross-sectional imaging using CT and MRI with diffusion-weighted imaging (DWI) sequences is important for appropriate management of patients with peritoneal carcinomatosis. Appreciation of the spectrum of diagnostic patterns and pitfalls as well as different sites of involvement of peritoneal carcinomatosis using CT and DWI is crucial for appropriate surgical treatment.

Key words

Ovarian cancer Peritoneal carcinomatosis Multidetector CT DWI MRI 

References

  1. 1.
    American Cancer Society (2008) Cancer facts and figures 2008. Atlanta, GA: American Cancer SocietyGoogle Scholar
  2. 2.
    Meyers MA, Oliphant M, Berne AS, Feldberg MA (1987) The peritoneal ligaments and mesenteries: pathways of intraabdominal spread of disease. Radiology 163(3):593–604PubMedGoogle Scholar
  3. 3.
    Meyers MA (1973) Distribution of intra-abdominal malignant seeding: dependency on dynamics of flow of ascitic fluid. Am J Roentgenol Radium Ther Nucl Med 119(1):198–206PubMedGoogle Scholar
  4. 4.
    Meyers MA (1976) Dynamic radiology of the abdomen: normal and pathologic anatomy. New York: Springer-Verlag, pp 37–71Google Scholar
  5. 5.
    Koppe MJ, Boerman OC, Oyen WJ, Bleichrodt RP (2006) Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Ann Surg 243:212–222PubMedCrossRefGoogle Scholar
  6. 6.
    Di Giorgio A, Naticchioni E, Biacchi D, et al. (2008) Cytoreductive surgey (peritonectomy procedures) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) in the treatment of diffuse peritoneal carcinomatosis from ovarian cancer. Cancer 113:315–325PubMedCrossRefGoogle Scholar
  7. 7.
    Sugarbaker PH (1995) Peritonectomy procedures. Ann Surg 221:29–42PubMedCrossRefGoogle Scholar
  8. 8.
    Sugarbaker PM, Chang D (1999) Results of treatment of 385 patients with peritoneal surface spread of appendiceal malignancy. Ann Surg Oncol 6:727–731PubMedCrossRefGoogle Scholar
  9. 9.
    Glehen O, Kwiatkowski F, Sugarbaker PH, et al. (2004) Cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for the management of peritoneal carcinomatosis from colorectal cancer: a multi-institutional study. J Clin Oncol 22:3284–3292PubMedCrossRefGoogle Scholar
  10. 10.
    Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H (2008) 8-Year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol 15:2633–2635CrossRefGoogle Scholar
  11. 11.
    Esquivel J, Sticca R, Sugarbaker P, et al. (2007) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of peritoneal surface malignancies of colonic origin: a consensus statement. Society of Surgical Oncology. Ann Surg Oncol 14:128–133PubMedGoogle Scholar
  12. 12.
    Koh JL, Yan TD, Glenn D, Morris DL (2009) Evaluation of preoperative computed tomography in estimating peritoneal cancer index in colorectal peritoneal carcinomatosis. Ann Surg Oncol 16(2):327–333PubMedCrossRefGoogle Scholar
  13. 13.
    Levy AD, Shaw JC, Sobin LH (2009) Secondary tumors and tumorlike lesions of the peritoneal cavity: imaging features with pathologic correlation. Radiographics 29(2):347–373PubMedCrossRefGoogle Scholar
  14. 14.
    Pannu HK, Bristow R, Montz F, Fishman EK (2003) Multidetector CT of peritoneal cersinomatosis from ovarian cancer. Radiographics 23:687–701PubMedCrossRefGoogle Scholar
  15. 15.
    Funicelli L, Travaini LL, Landoni F, Trifirò G, Bonello L, Bellomi M (2010) Peritoneal carcinomatosis from ovarian cancer: the role of CT and [(18)F] FDG-PET/CT. Abdom Imaging 35(6):701–707PubMedCrossRefGoogle Scholar
  16. 16.
    Coakley FV, Choi P, Poturi B, et al. (2002) Peritoneal metastases detection with spiral CT in patient with ovarian cancer. Radiology 223:495–499PubMedCrossRefGoogle Scholar
  17. 17.
    Forstner R, Hricak H, White S (1995) CT and MRI of ovarian cancer. Abdom Imaging 20:2–8PubMedCrossRefGoogle Scholar
  18. 18.
    Walkey MM, Friedman AC, Sohotra P, Radecki PD (1988) CT manifestation of peritoneal carcinomatosis. AJR Am J Roentgenol 150:1035–1041PubMedGoogle Scholar
  19. 19.
    Kim SJ, Kim HH, Kim YH, et al. (2009) Peritoneal metastasis: detection with 16- or 64-detector row CT in patients undergoing surgery for gastric cancer. Radiology 253(2):407–415PubMedCrossRefGoogle Scholar
  20. 20.
    Sugarbaker PH (1999) Management of peritoneal surface malignancy: the surgeon’s role. Langenbeck’s Arch Surg 384:576–587CrossRefGoogle Scholar
  21. 21.
    Amendola MA (1985) The role of CT in the evaluation of ovarian malignancy. CRC Crit Rev Diagn Imaging 24:329–368Google Scholar
  22. 22.
    Kyriazi S, Collins DJ, Morgan VA, Giles SL, deSouza NM (2010) Diffusion-weighted imaging of peritoneal disease for noninvasive staging of advanced ovarian cancer. Radiographics 30(5):1269–1285PubMedCrossRefGoogle Scholar
  23. 23.
    Dromain C, Leboulleux S, Auperin A, et al. (2008) Staging of peritoneal carcinomatosis: enhanced CT vs. PET/CT. Abdom Imaging 33(1):87–93PubMedCrossRefGoogle Scholar
  24. 24.
    Jacquet P, Jelinek JS, Steves MA, Sugarbaker PH (1993) Evaluation of computed tomography in patients with peritoneal carcinomatosis. Cancer 72(5):1631–1636PubMedCrossRefGoogle Scholar
  25. 25.
    Bristow RE, Duska LR, Lambrou NC, et al. (2000) A model for predicting surgical outcome in patients with advanced ovarian carcinoma using computed tomography. Cancer 89:1532–1540PubMedCrossRefGoogle Scholar
  26. 26.
    Coakley FV, Hricak H (1999) Imaging of peritoneal and mesenteric disease: key concepts for the clinical radiologist. Clin Radiol 54(9):563–574PubMedCrossRefGoogle Scholar
  27. 27.
    Jang YJ, Kim JK, Park SB, Cho KS (2007) Variable CT findings of epithelial origin ovarian carcinoma according to the degree of histologic differentiation. Korean J Radiol 8(2):120–126PubMedCrossRefGoogle Scholar
  28. 28.
    Tempany CM, Zou KH, Silverman SG, et al. (2000) Staging of advanced ovarian cancer: comparison of imaging modalities—report from the Radiological Diagnostic Oncology Group. Radiology 215(3):761–767PubMedGoogle Scholar
  29. 29.
    de Bree E, Koops W, Kröger R, et al. (2004) Peritoneal carcinomatosis from colorectal or appendiceal origin: correlation of pre-operative CT with intraoperative findings and evaluation of interobserver agreement. J Surg Oncol 86(2):64–73PubMedCrossRefGoogle Scholar
  30. 30.
    Coakley FV, Hricak H (1999) Imaging of peritoneal and mesenteric disease: key concepts for the clinical radiologist. Clin Radiol 54(9):563–574PubMedCrossRefGoogle Scholar
  31. 31.
    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188(6):1622–1635PubMedCrossRefGoogle Scholar
  32. 32.
    Qayyum A (2009) Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics 29(6):1797–1810PubMedCrossRefGoogle Scholar
  33. 33.
    Russell N, Low MD (2007) MR imaging of the peritoneal spread of malignancy. Abdom Imaging 32:267–283CrossRefGoogle Scholar
  34. 34.
    Low RN, Sebrechts CP, Barone RM, Muller W (2009) Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings—a feasibility study. AJR Am J Roentgenol 193(2):461–470PubMedCrossRefGoogle Scholar
  35. 35.
    Low RN, Gurney J (2007) Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J Magn Reson Imaging 25(4):848–858PubMedCrossRefGoogle Scholar
  36. 36.
    Woodhams R, Kakita S, Hata H, et al. (2009) Diffusion weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am J Roentgenol 193(1):260–266PubMedCrossRefGoogle Scholar
  37. 37.
    Fujii S, Matsusue E, Kanasaki Y, et al. (2008) Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol 18(1):18–23PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Iafrate
    • 1
  • M. Ciolina
    • 1
  • P. Sammartino
    • 2
  • P. Baldassari
    • 1
  • M. Rengo
    • 1
  • P. Lucchesi
    • 1
  • S. Sibio
    • 2
  • F. Accarpio
    • 2
  • A. Di Giorgio
    • 2
  • A. Laghi
    • 1
  1. 1.Department of Radiological Sciences, Oncology and Pathology“Sapienza” University of RomeRomeItaly
  2. 2.Department of Surgery “P. Valdoni”“Sapienza” University of RomeRomeItaly

Personalised recommendations